在PCB制造過程中,孔無銅現(xiàn)象作為致命性缺陷之一,直接導(dǎo)致電氣連接失效和產(chǎn)品報廢。該問題涉及鉆孔、化學(xué)處理、電鍍等全流程,其成因復(fù)雜且相互交織。本文將從工藝機理、材料特性及設(shè)備控制三個維度,系統(tǒng)解析孔無銅的根源并提出解決方案。
在電子制造領(lǐng)域,PCB孔銅斷裂是導(dǎo)致電路失效的典型問題,其隱蔽性與破壞性常引發(fā)批量性質(zhì)量事故。本文結(jié)合實際案例與失效分析數(shù)據(jù),系統(tǒng)梳理孔銅斷裂的五大核心原因,為行業(yè)提供可落地的解決方案。
在電子制造領(lǐng)域,噴錫板(HASL,Hot Air Solder Levelling)因成本低廉、工藝成熟,仍占據(jù)中低端PCB市場30%以上的份額。然而,隨著無鉛化趨勢推進,HASL工藝的拒焊(Non-Wetting)與退潤濕(Dewetting)問題愈發(fā)凸顯,成為制約SMT良率的關(guān)鍵瓶頸。本文結(jié)合典型失效案例,從工藝控制、材料特性及環(huán)境因素三方面,系統(tǒng)解析HASL拒焊的深層機理。
在PCB制造過程中,阻焊油墨作為關(guān)鍵功能層,其質(zhì)量直接影響產(chǎn)品可靠性。然而,油墨氣泡、脫落、顯影不凈等異常問題長期困擾行業(yè),尤其在5G通信、汽車電子等高可靠性領(lǐng)域,阻焊缺陷導(dǎo)致的失效占比高達15%-20%。本文結(jié)合典型失效案例,系統(tǒng)解析阻焊油墨異常的根源機理,并提出基于工藝優(yōu)化的改善方案。
在5G通信、新能源汽車、工業(yè)控制等高功率密度應(yīng)用場景中,傳統(tǒng)有機基板已難以滿足散熱與可靠性需求。陶瓷基板憑借其高熱導(dǎo)率、低熱膨脹系數(shù)及優(yōu)異化學(xué)穩(wěn)定性,成為功率器件封裝的核心材料。本文從PCB設(shè)計規(guī)范與陶瓷基板導(dǎo)入標準兩大維度,解析高功率PCB設(shè)計的關(guān)鍵技術(shù)要求。
在電子制造領(lǐng)域,PCB(印刷電路板)作為核心組件,其質(zhì)量直接影響整機性能與可靠性。然而,受材料、工藝、環(huán)境等多重因素影響,PCB生產(chǎn)過程中常出現(xiàn)短路、開路、焊接不良等缺陷。本文基于行業(yè)實踐與失效分析案例,系統(tǒng)梳理PCB常見不良類型、成因及改善措施,為提升制造良率提供技術(shù)參考。
在PCB(印制電路板)制造過程中,感光阻焊油墨作為保護電路、防止焊接短路的關(guān)鍵材料,其性能穩(wěn)定性直接影響產(chǎn)品良率與可靠性。然而,受工藝參數(shù)、材料特性及環(huán)境因素影響,油墨異?,F(xiàn)象頻發(fā)。本文聚焦顯影不凈、黃變、附著力不足等典型失效模式,結(jié)合行業(yè)實踐提出系統(tǒng)性改善方案。
在電子制造領(lǐng)域,印刷電路板(PCB)的表面處理工藝直接影響其可靠性、信號完整性和使用壽命。其中,化學(xué)鍍鎳浸金(ENIG,俗稱“鍍金”)與有機保焊劑(OSP)是兩種主流工藝,但它們在失效模式、應(yīng)用場景及成本效益上存在顯著差異。本文從PCB失效分析的角度,深入對比這兩種工藝的技術(shù)特性與潛在風(fēng)險。
在PCB設(shè)計的宏偉藍圖中,布局與布線規(guī)則猶如精密樂章中的指揮棒,是鑄就電路板卓越性能、堅不可摧的可靠性及經(jīng)濟高效的制造成本的靈魂所在。恰如一位巧手的園藝師,合理的布局藝術(shù)性地編排著每一寸空間,既削減了布線交織的繁復(fù)迷宮,又如同穩(wěn)固的地基,提升了系統(tǒng)穩(wěn)如磐石的穩(wěn)定性。
在電子產(chǎn)品的制造過程中,PCB(印刷電路板)的布局布線是至關(guān)重要的環(huán)節(jié)。它涉及到將電子元器件按照特定要求進行合理布置,并通過導(dǎo)線將它們連接起來,以實現(xiàn)電路的功能。布局布線的質(zhì)量直接影響到產(chǎn)品的性能、可靠性和成本。因此,掌握PCB布局布線的技巧和優(yōu)化方法對于電子工程師來說具有重要意義。
EMI測試整改是在電子產(chǎn)品研發(fā)和生產(chǎn)過程中,針對電磁干擾問題進行的專項改進工作。通過整改,可以有效降低產(chǎn)品在工作時產(chǎn)生的電磁輻射,減少對周邊設(shè)備的干擾,提高產(chǎn)品的電磁兼容性。同時,EMI測試整改也是產(chǎn)品通過國內(nèi)外電磁兼容性認證的必要條件,對于產(chǎn)品進入市場具有重要意義。
導(dǎo)電陽極絲(CAF,Conductive Anodic Filamentation)是一種在PCB中可能發(fā)生的電化學(xué)現(xiàn)象。當PCB處于高溫高濕環(huán)境時,在電壓差的作用下,內(nèi)部的金屬離子沿著玻纖絲間的微裂通道與金屬鹽發(fā)生電化學(xué)反應(yīng),從而發(fā)生漏電的現(xiàn)象。
PCB烘烤的程序其實還蠻麻煩的,烘烤時必須將原本的包裝拆除后才能放入烤箱中,然后要用超過100℃的溫度來烘烤,但是溫度又不能太高,免得烘烤期間水蒸氣過度膨脹反而把PCB給撐爆。
印制電路板(PCB)布線在高速電路中具有關(guān)鍵的作用,但它往往是電路設(shè)計過程的最后幾個步驟之一。高速PCB布線有很多方面的問題,關(guān)于這個題目已有人撰寫了大量的文獻。本文主要從實踐的角度來探討高速電路的布線問題。主要目的在于幫助新用戶當設(shè)計高速電路PCB布線時對需要考慮的多種不同問題引起注意。另一個目的是為已經(jīng)有一段時間沒接觸PCB布線的客戶提供一種復(fù)習(xí)資料。
在缺乏電路板圖紙的情況下,維修電路板可能會顯得頗具挑戰(zhàn)。然而,只要掌握一定的方法和技巧,你仍然能夠有效地解決許多常見問題。
孔徑大小直接影響高頻信號的衰減程度。例如,在28GHz頻段,0.3mm孔徑的過孔每厘米損耗比0.2mm孔徑高2.1dB,這種差異在長距離傳輸中會被放大。大孔徑因孔壁銅層電流路徑更長、電磁耦合更強,導(dǎo)致導(dǎo)體損耗和介質(zhì)損耗均增加。采用0.15mm激光孔可降低1.8dB損耗。
PCB線路板過孔堵上的主要目的是防止波峰焊或回流焊時錫液貫穿孔洞引發(fā)短路,同時避免助焊劑殘留、錫珠彈出等問題,確保貼裝精度和信號完整性。
過孔在傳輸線上表現(xiàn)為阻抗不連續(xù)的斷點,會造成信號的反射。一般過孔的等效阻抗比傳輸線低12%左右,比如50 歐姆的傳輸線在經(jīng)過過孔時阻抗會減小6 歐姆(具體和過孔的尺寸,板厚也有關(guān),不是絕對減小)。但過孔因為阻抗不連續(xù)而造成的反射其實是微乎其微的,其反射系數(shù)僅為:(44-50)/(44+50)=0.06,過孔產(chǎn)生的問題更多的集中于寄生電容和電感的影響。
為了制造雙面電路板,電介質(zhì)核心材料被夾在兩層由器件焊墊、區(qū)域填充物和連接走線組成的銅連接之間。這種基本結(jié)構(gòu)也用于多層電路板的層對,只是銅和電介質(zhì)材料更薄,且不包括內(nèi)層的焊墊。最終,所有這些層對合在一起,構(gòu)成一個多層電路板,之后進行鉆孔,然后成品電路板就可以交給組裝人員安裝電子器件了。然而,在將電路板送到組裝人員那里之前,必須完成另一個步驟來保護電路板:涂抹阻焊層。