電子設備的靈敏度越來越高,這要求設備的抗干擾能力也越來越強,因此PCB設計也變得更加困難,如何提高PCB的抗干擾能力成為眾多工程師們關注的重點問題之一。本文將介紹PCB設計中降低噪聲與電磁干擾的一些小竅門。
ADC的一個重要趨勢是轉向更高的分辨率。這一趨勢影響著一系列的應用,包括工廠自動化、溫度檢測,以及數據采集。對更高分辨率的需求使設計者們從傳統的12位SAR(逐次逼近寄存
凡是做過開發(fā)工作的人員都有這樣的經歷,測試開關電源或在實驗中有聽到類似產品打高壓不良的漏電聲響或高壓拉弧的聲音不請自來:其聲響或大或小,或時有時無;其韻律或深沉
隨著開關頻率和開關速度不斷的提升,在使用開關型的DC/DC電源的時候,要特別關注輸入輸出電源的紋波。但是測量DC/DC電源的紋波和噪聲沒有一個行業(yè)標準。不同廠家的測試環(huán)境
在測量電源軌的紋波時,必須盡量減小噪聲,因為紋波幅度可能很小。示波器探頭是基本的測量工具,但它們可能引入噪聲與誤差。地線(如與標準示波器探頭連接的那根線)可能增加一些不會出現在示波器軌跡
增量累加ADC表面上看起來也許很復雜,但實際上它是由一系列簡單的部件所構成的精確數據轉換器。增量累加ADC由兩個主要構件組成:執(zhí)行模數轉換的增量累加調制器和數字低通濾波器/抽取電路。增量累加
開關電源作為一種通用電源,以其輕、薄、小和高效率等特點為人們所熟知,是各種電子設備小型化和低成本化不可缺少的一種電源方式,已成為當今的主流電源。隨著電子信息產業(yè)
0 引言 短波信道存在多徑時延、多普勒頻移和擴散、高斯白噪聲干擾等復雜現象。為了測試短波通信設備的性能,通常需要進行大量的外場實驗。相比之下,信道模擬器能夠在實驗室環(huán)境下進行類似的性能測試,而且測試費用少
概述 隨著半導體技術的快速發(fā)展,近年來FPGA的器件容量和輸入輸出的管腳數量都極大的增加了,例如StratixIV器件,最大的一款EP4SE680擁有68.11萬個邏輯單元和1104個輸入輸出管腳。大量的輸出管腳在同一時刻翻轉會引起
盡量消除或抑制電子電路的干擾是電路設計和應用始終需要解決的問題。傳感器電路通常用來測量微弱的信號,具有很高的靈敏度,如果不能解決好各類干擾的影響,將給電路及其測
在任何高速數字電路設計中,處理噪聲和電磁干擾(EMI)都是一個必然的挑戰(zhàn)。處理音視頻和通信信號的數字信號處理(DSP)系統特別容易遭受這些干擾,設計時應該及早搞清楚潛在的噪聲和干擾源,并及早采取措施將這些干擾降到最小。
對于同一個電源,使用不同的示波器測量紋波和噪聲值總是有些差異。甚至使用不同的探頭也會影響測量結果。是什么原因呢?
電子設備的靈敏度越來越高,這要求設備的抗干擾能力也越來越強,因此PCB設計也變得更加困難,如何提高PCB的抗干擾能力成為眾多工程師們關注的重點問題之一。本文將介紹PCB設計中降低噪聲與電磁干擾的一些小竅門。
開關模式電源會產生噪聲。很多應用都需要限制該噪聲,從而不影響模擬數據完整性,同時符合某些EMI要求。本文將介紹我們在開關模式電源(SMPS)中發(fā)現的各種類型噪聲、討論不
盡管開關電源的工作頻率遠超過人類的聽力范圍,但它們在特定的負載條件下仍會產生音頻噪聲。音頻噪聲的可能來源多種多樣。噪聲可以是設計缺陷(如振蕩輸出電壓)導致,或者由
ADI新近推出了IGBT Gate Driver ADuM4135,這個芯片與當前普遍應用的Gate Driver相比,有著更短的傳輸延遲,有著更高的CMTI性能,并且還集成了諸多的保護功能。
在這里,我們將噪聲定義為任何在運放輸出端的無用信號。噪聲可以是隨機信號或重復信號,內部或外部產生,電壓或電流形式,窄帶或寬帶,高頻或低頻。噪聲通常包括器件的固有
在使用數字示波器測量波形參數的時候,我們經常會遇到“光標測量”與“自動測量”結果不一致的情況,到底該哪一個比較準確?本文將為大家解開這個困擾。
抗混疊濾波器的設計包括一個過采樣架構和一個補充數字抽取濾波器。這個過采樣架構將那奎斯特頻率放置在遠離信號帶寬的位置上,而數字抽取濾波器衰減大多數有害的帶外信號。
軌到軌運放十分流行,特別是在那些低電壓供電的場合。因此,你應該了解軌到軌運放的工作原理,同時對采用軌到軌運放的設計做一些權衡。圖1所示是一個典型的軌到軌輸入級,