www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 電源DC/DC
[導(dǎo)讀]由于更高的集成度、更快的處理器運行速度以及更小的特征尺寸,內(nèi)核及I/O電壓的負載點(POL)處理器電源設(shè)計變得越來越具挑戰(zhàn)性。處理器技術(shù)的發(fā)展必須要和POL電源設(shè)計技術(shù)相匹配。對當今的高性能處理器而言,5年或10年以

由于更高的集成度、更快的處理器運行速度以及更小的特征尺寸,內(nèi)核及I/O電壓的負載點(POL)處理器電源設(shè)計變得越來越具挑戰(zhàn)性。處理器技術(shù)的發(fā)展必須要和POL電源設(shè)計技術(shù)相匹配。對當今的高性能處理器而言,5年或10年以前使用的電源管理解決方案可能已不再行之有效。因此,當為德州儀器(TI)的DaVinci數(shù)字信號處理器(DSP)進行POL電源解決方案設(shè)計時,充分了解基本電源技術(shù)可以幫助克服許多設(shè)計困難。本文以一個基于TI電源管理產(chǎn)品的電源管理參考設(shè)計為例,討論一系列適用于DaVinci處理器的電源去耦、浪涌電流、穩(wěn)壓精度和排序技術(shù)。

大型旁路去耦電容


處理器所使用的全部電流除了由電源本身提供以外,處理器旁路和一些電源的大型電容也是重要來源。當處理器的任務(wù)級別(level of activity)急劇變化而出現(xiàn)陡峭的負載瞬態(tài)時,首先由一些本地旁路電容提供瞬時電流,這種電容通常為小型陶瓷電容,可快速響應(yīng)對負載變化。隨著處理速度的增加,對于更多能量存儲旁路電容的需求變得更為重要。另一個能量來源是電源的大電容。為避免出現(xiàn)穩(wěn)定性問題,一定要確保電源的穩(wěn)定性,且可利用增加的旁路電容正確地啟動。因此,必須保證對電源反饋回路進行補償以適應(yīng)額外的旁路電容。電源評估板(EVM)在試驗臺上可能非常有效,但在負載附近增加了許多旁路電容的情況下,其性能可能會發(fā)生變化。


作為一個經(jīng)驗法則,可以通過在盡可能靠近處理器電源引腳的地方放置多個0603或0402電容(60用于內(nèi)核電壓,而30則用于DM6?43的I/O電壓),將DaVinci電源電壓的系統(tǒng)噪聲進行完全去耦。更小型的0402電容是更好的選擇,因為其寄生電感較小。較小的電容值(如560pF)應(yīng)該最接近電源引腳,其距離僅為1.25cm。其次最接近電源引腳的是中型旁路電容(如220nF)。TI建議每個電源至少要使用8個小型電容和8個中型電容,并且應(yīng)緊挨著BGA過孔安裝(占用內(nèi)部BGA空間,或者至少應(yīng)在外部角落處)。在更遠一點的地方,可以安裝一些較大的大型電容,但也應(yīng)該盡可能地靠近處理器[1]。


浪涌電流


具有大旁路電容的電源存在啟動問題,因為電源可能無法對旁路電容充電,而這正是啟動期間滿足處理器要求所需要的。因此,在啟動期間,過電流可能會引起電源的關(guān)斷,或者電壓可能會暫時下降(變?yōu)榉菃握{(diào)狀態(tài))。一個很好的設(shè)計實踐是確保電壓在啟動期間不下降、過沖或承受長時間處于高壓狀態(tài)。為減少浪涌電流,可通過增加內(nèi)核電壓電源的啟動時間,來允許旁路電容緩慢地充電。許多DC/DC調(diào)節(jié)器都具有獨特的可調(diào)軟啟動引腳,以延長電壓斜坡時間。如果調(diào)節(jié)器不具有這種軟啟動引腳,那么可利用一個外部MOSFET以及一種RC充電方案,從外部對其進行實施。


本文推薦使用一種帶有電流限制功能的DC/DC調(diào)節(jié)器,來幫助維持單調(diào)的電壓斜坡。采用軟啟動方案有助于滿足DaVinci處理器的排序要求。


上電排序


越來越多的處理器廠商提供推薦的內(nèi)核及I/O上電排序的時序準則。一旦獲知時序要求,POL電源設(shè)計人員便可選擇一種適當?shù)募夹g(shù)。對雙路電源上電和斷電的方法有很多種,其中順序排序和同時排序是最為常用。


當在內(nèi)核和I/O上電之間要求一個較短的毫秒級時間間隔時,可以采用任何順序?qū)嵤╉樞蚺判颉嵤╉樞蚺判虻囊环N方法是只需將一個穩(wěn)壓器的PWERGOOD引腳連接至另一個穩(wěn)壓器的ENABLE引腳。當內(nèi)核和I/O電壓差在上電和斷電期間需要被最小化時,就需要使用同時排序。為實施同時排序,內(nèi)核和I/O電壓應(yīng)彼此緊密地跟蹤,直到達到較低的理想電壓電平。此外,較低的內(nèi)核電壓達到了其設(shè)定值要求,而較高的I/O電壓將可以繼續(xù)上升至其設(shè)定值[2]。

[!--empirenews.page--]
在自升壓模式中,DaVinci處理器要求對CVDD和CVDDDSP內(nèi)核電源進行同時排序。在主機升壓模式中,CVDD必須斜坡上升,并在CVDDSP開始斜坡上升以前達到其設(shè)置值(1.2V)。作為一個最大值,CVDDDSP電源必須在關(guān)閉(開啟)“始終開啟”和DSP域之間的短路開關(guān)以前上電??梢砸匀魏雾樞騿覫/O電源(DVDD18、DVDDR2和DVDD33),但必須在CVDD電源100ms的同時達到設(shè)定值[3]。


穩(wěn)壓精度


影響電源系統(tǒng)的電壓容差有幾個因素,其中電壓基準精度是最重要的一個因素,可在電源管理器件的產(chǎn)品說明書中找到其規(guī)范。新型穩(wěn)壓器要求達到±1%的精度或更高的溫度基準精度。一些成本較低的穩(wěn)壓器可能要求±2%或±3%的基準電壓精度。請在產(chǎn)品說明書中查看穩(wěn)壓器廠商的相關(guān)規(guī)范,以確保穩(wěn)壓精度可以滿足處理器的要求。另一個影響穩(wěn)壓精度的因素是穩(wěn)壓器外部反饋電阻的容差。


在要求精確容差值的情況下,推薦使用±1%的容差電阻。另外,在將這種電阻用于編程輸出電壓時,將會帶來額外±0.5%的容差,具體的計算公式為:輸出電壓精度=2*(1-VREF/VOUT)*TOLRES


第三個影響因素是輸出紋波電壓。一個優(yōu)良的設(shè)計實踐是針對低于1%輸出電壓的峰峰輸出電壓進行設(shè)計,它可使電源系統(tǒng)的電壓容差增加±0.5%。假設(shè)基準精度為±2%,那么這三個影響因素加在一起將使電源系統(tǒng)精度為±3%。


DaVinci CVDD電源要求一個可帶來±4.2%精度、50mV容差的1.2V典型內(nèi)核電源。3.3V DVDD電源具±4.5%精度、150mV的容差,而1.8V DVDD電源則具有±5%精度、90mV的容差。使穩(wěn)壓器靠近負載以減少路徑損耗非常重要。需要注意的是,如果電源具有3%的容差,且處理器內(nèi)核電壓要求4.2%容差,則必須對去耦網(wǎng)絡(luò)進行設(shè)計,以便實現(xiàn)1.2V電壓軌[4]的1.2%精度或14mV容差。[!--empirenews.page--]


歷史經(jīng)驗數(shù)據(jù)顯示,內(nèi)核電壓隨著處理技術(shù)的發(fā)展而不斷降低。對內(nèi)核電壓稍作改變,便可提供更高的性能,或節(jié)省更多電量。選擇一個具有可編程輸出電壓和±3%以內(nèi)輸出電壓容差的穩(wěn)壓器是一種較好的設(shè)計方法。相比從零開始重新設(shè)計一種全新的電源,簡單的電阻器變化或引腳重新配置要容易得多。因此,最好選擇一款可以支持低至0.9V或更低輸出電壓的穩(wěn)壓器,以便最大化地重用,并幫助簡化TI片上系統(tǒng)(SoC)器件未來版本的使用。


參考設(shè)計


我們構(gòu)建了若干個電源管理參考設(shè)計,并進行數(shù)字音頻/視頻應(yīng)用的測試。這些設(shè)計均采用TI的TMS320DM6?43和TMS320DM6?46處理器,這些處理器能滿足排序、電壓精度和啟動要求。圖1是12V電源的參考設(shè)計電路圖。該設(shè)計采用TPS62111同步降壓轉(zhuǎn)換器、TPS62040同步降壓轉(zhuǎn)換器以及TPS73618低壓降調(diào)節(jié)器,它們分別提供3.3V、1.2V和1.8V電壓軌。這種參考設(shè)計包含一個簡單的外部MOSFET、電阻和電容延遲電路,以使3.3V電壓軌能滿足自升壓模式排序方案要求。TPS62040不但提供1.2V的內(nèi)核電壓,而且還可滿足引腳5軟啟動電容的排序要求。這種解決方案的容差為±3%,效率在90%以上。為滿足主機升壓模式排序方案要求,可以將一個類似的MOSFET、電阻以及電容電路增加到1.2V電壓軌。


圖1:12V電源的參考設(shè)計電路圖。[!--empirenews.page--]


圖2是復(fù)位電路。該電路采用TPS3808和TPS3803電源電壓監(jiān)控器來監(jiān)控電壓軌的變化情況。請采用最小值的TPS3808G01(U5)來設(shè)計復(fù)位電路電源。如果需要大于3.3V電壓軌/1.5A電流和1.2V電壓軌/1.2A電流,那么TPS54350和TPS54110S WIFT DC/DC轉(zhuǎn)換器可能會被分別用于實現(xiàn)3A和1.5A電流。SWIFT穩(wěn)壓器具有基于DaVinci技術(shù)的數(shù)字視頻EVM的特點。如欲了解更多采用了線性調(diào)節(jié)器、TPS40K DC/DC轉(zhuǎn)換器、TPS62xxx DC/DC轉(zhuǎn)換器或多輸出電源管理單元(PMU)的5V和12V輸入電源


圖2:軌電壓復(fù)位和電壓監(jiān)控電路。


本文小結(jié)


一旦充分了解去耦、排序和容差要求,為DaVinci處理器設(shè)計一款電源解決方案就變得非常簡單明了。在為所有高性能處理器設(shè)計電源時,堅持使用上述技術(shù)是相當不錯的設(shè)計實踐。如果還需要其他支持,可從TI獲取一些參考設(shè)計以加速產(chǎn)品上市進程。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

2020 年,公司處理器產(chǎn)品四核龍芯 3A5000/3B5000 研制成功。龍芯 3A5000/3B5000 基于龍芯 3A4000/3B4000 進行工藝升級,主頻 2.3-2.5GHz, 單核通用處理性能是龍芯 3A...

關(guān)鍵字: 處理器 芯片 市場化

摘要:電動設(shè)備的傳統(tǒng)力矩測控技術(shù)測量精度不高,所依賴器件長期穩(wěn)定性差,為了實現(xiàn)小干擾、高靈敏度的檢測要求,提出了相敏電子式交流感應(yīng)電機力矩檢測與控制技術(shù),該方法包括電壓和電流采樣、信號處理、力矩控制三部分。根據(jù)理論研究,...

關(guān)鍵字: 小干擾 穩(wěn)定性 精度

自主研發(fā)芯片對其自身有更為實際的意義。首先,自主研發(fā)芯片可以減輕對上游供應(yīng)鏈的依賴。其次,自主芯片更方便打造出獨家特色產(chǎn)品,增強產(chǎn)品在市場上的競爭力。再次,自主研發(fā)芯片能降低成本,提高利潤。

關(guān)鍵字: 芯片 處理器 市場

本文中,小編將對無線模塊予以介紹,如果你想對無線模塊的詳細情況有所認識,或者想要增進對它的了解程度,不妨請看以下內(nèi)容哦。

關(guān)鍵字: 無線模塊 寄存器 處理器

(全球TMT2022年10月11日訊)近日,昆侖芯(北京)科技有限公司的第二代云端通用人工智能計算處理器昆侖芯2代AI芯片及AI加速卡與飛槳完成III級兼容性測試,兼容性表現(xiàn)良好。 產(chǎn)品兼容性證明 本次...

關(guān)鍵字: 人工智能 加速卡 處理器 模型

(全球TMT2022年10月8日訊)愛立信全新上線超過200個AI App的業(yè)務(wù)持續(xù)性解決方案,進一步保障并增強了CSP移動網(wǎng)絡(luò)業(yè)務(wù)持續(xù)運行的效率和健壯性。該方案由愛立信與運營商聯(lián)合開發(fā),主要用于運維過程中的預(yù)測性維護...

關(guān)鍵字: AMD 處理器 愛立信 EPYC

臺北2022年10月3日 /美通社/ -- AMD EPYC在CPU市場上始終處于變革性顛覆者的地位。從早期7001系列處理器推出高達32核、128 條PCIe Gen3通道到現(xiàn)在的"米蘭"7003系...

關(guān)鍵字: AMD 處理器 EPYC BSP

電磁干擾 (EMI) 被譽為電源設(shè)計中最困難的方面之一。我認為這種聲譽在很大程度上來自這樣一個事實,即大多數(shù)與 EMI 相關(guān)的挑戰(zhàn)并不是通過查看原理圖就能解決的問題。這可能令人沮喪,因為原理圖是工程師了解電路功能的中心位...

關(guān)鍵字: 電磁干擾 電源設(shè)計

據(jù)外媒報導(dǎo),日本軟銀集團旗下的半導(dǎo)體IP公司Arm于當?shù)貢r間8月31日表示,該公司已經(jīng)對移動處理器大廠高通(Qualcomm) 與其子公司Nuvia 發(fā)起訴訟,控告這兩家公司侵犯Arm專利。

關(guān)鍵字: ARM 高通 服務(wù)器 處理器

intel處理器(Intel cpu)是英特爾公司開發(fā)的中央處理器,有移動、臺式、服務(wù)器三個系列,是計算機中最重要的一個部分,由運算器和控制器組成。如果把計算機比作一個人,那么CPU就是他的大腦,其重要作用由此可見一斑。

關(guān)鍵字: 英特爾 處理器 Intel Processor

電源

8373 篇文章

關(guān)注

發(fā)布文章

編輯精選

技術(shù)子站

關(guān)閉