新藥研發(fā)從上游到下游的幾個環(huán)節(jié)包括藥物靶標的確定,先導(dǎo)化合物的篩選,先導(dǎo)化合物的優(yōu)化和最終的臨床實驗。研發(fā)費用高、研發(fā)周期長、研發(fā)成功率低一直是壓在制藥企業(yè)身上的“三座大山”。塔夫茨藥物開發(fā)研究中心(Tufts Center for The Study of DrugDevelopment)的數(shù)據(jù)顯示:開發(fā)一種新藥的平均成本為 26 億美元;一種新藥上市的平均時間約為12 年;大約只有 10% 的候選藥物能從第一階段測試走向市場。德勤的數(shù)據(jù)顯示:2017 年,美國最大的生物制藥公司的投資回報率下降至3.2%。
2.AI技術(shù)的崛起,為新藥研發(fā)帶來了新方向。
過去 20 年,計算機處理能力的持續(xù)快速增長,大量數(shù)據(jù)集的可用性和先進算法的開發(fā),大大推動了機器學(xué)習(xí)的發(fā)展。新藥研發(fā)領(lǐng)域數(shù)據(jù)密集,這讓人工智能有了用武之地。AI 不僅能夠挖掘出不易被發(fā)現(xiàn)的隱性關(guān)系,構(gòu)建藥物、疾病和基因之間的深層次關(guān)系。同時,可對候選化合物進行虛擬篩選,更快地篩選出具有較高活性的化合物,為后期臨床試驗做準備。
目前,AI 在新藥研發(fā)領(lǐng)域主要應(yīng)用于靶點發(fā)現(xiàn)、化合物合成、化合物篩選、晶型預(yù)測、患者招募、優(yōu)化臨床試驗設(shè)計和藥物適應(yīng)癥開拓等場景。來自 Tech Emergence 的一份報告研究了所有行業(yè)的人工智能應(yīng)用,結(jié)果表明:人工智能可以將新藥研發(fā)的成功率從 12%提高到 14%,可以為生物制藥行業(yè)節(jié)省數(shù)十億美元。
自2017年以來,AI在制藥領(lǐng)域的應(yīng)用可謂如火如荼,國際制藥巨頭紛紛入局AI開發(fā),用于提高新藥的研發(fā)效率。據(jù)統(tǒng)計,有100 多家初創(chuàng)企業(yè)在探索用 AI 發(fā)現(xiàn)藥物,傳統(tǒng)的大型制藥企業(yè)更傾向于與采用合作的方式,如阿斯利康與 Berg,強生與 Benevolent AI,默沙東與 Atomwise,武田制藥與 Numerate,賽諾菲和葛蘭素史克與 Exscientia,輝瑞與 IBM Watson 等。同時,AI應(yīng)用于新藥研發(fā)仍需面對人才短缺、數(shù)據(jù)標準化與共享機制、商業(yè)模式創(chuàng)新等諸多問題。
在制藥和生命科學(xué)中,數(shù)據(jù)是AI的關(guān)鍵。AI被應(yīng)用于藥物研發(fā)的各個階段,但若是數(shù)據(jù)質(zhì)量不高,即便使用非??煽康乃惴ǎ膊粫〉煤媒Y(jié)果,反而會浪費大量的資源和時間。鑒于此,IBM 曾在2016年斥資26億美元收購醫(yī)療數(shù)據(jù)公司Truven;羅氏曾在2018年以19億美金收購腫瘤大數(shù)據(jù)公司FlaTIron Health的全部股份。也有專家表示,通過知識共享開展合作和提高已有數(shù)據(jù)的質(zhì)量比積累數(shù)據(jù)更為重要,關(guān)鍵是建立一套切實可行的數(shù)據(jù)標準,與風(fēng)險利益共擔的數(shù)據(jù)分享機制。
3.AI和藥物開發(fā)的模式,主要包括AI研發(fā)外包、企業(yè)內(nèi)部組建AI研發(fā)部門,但每種模式都有各自的優(yōu)缺點。AI研發(fā)外包。由制藥公司提供特定的研究數(shù)據(jù)和生物靶點信息,然后由AI驅(qū)動的藥物發(fā)現(xiàn)初創(chuàng)公司依靠這些數(shù)據(jù)建立模型。一旦成功篩選出候選藥物,制藥公司會根據(jù)協(xié)議進行授權(quán)或自行擁有這種藥物。這種策略靈活性高且成本較低,但AI公司做為服務(wù)方需要獲取制藥公司整個藥物開發(fā)流程中最“隱私”的情報,因此,選擇合適的合作伙伴是重中之重。
在企業(yè)內(nèi)部組建AI研發(fā)部門。在與外部積極合作的同時,制藥公司也在培養(yǎng)內(nèi)部AI專業(yè)技能,并建立數(shù)字基礎(chǔ)設(shè)施,以提高數(shù)據(jù)使用效率。這種方式的挑戰(zhàn)在于如何建立內(nèi)部專業(yè)的AI算法和自動化流程,以及高效的運算平臺。
無論哪種模式,AI和藥物開發(fā)的結(jié)合,與其說是對IT技術(shù)人員的挑戰(zhàn),不如說更是對藥學(xué)人員的挑戰(zhàn)。一個運營良好的AI藥物發(fā)現(xiàn)團隊,應(yīng)該是能夠讓IT技術(shù)人員和藥學(xué)科學(xué)家保持溝通無障礙,彼此交流更明晰,清楚對方的意圖。