www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 芯聞號 > 充電吧
[導讀]題目鏈接:http://acm.hdu.edu.cn/showproblem.php?pid=5047 題面: Sawtooth Time Limit: 2000/1000 MS (Java/Ot

題目鏈接:http://acm.hdu.edu.cn/showproblem.php?pid=5047


題面:

Sawtooth Time Limit: 2000/1000 MS (Java/Others)????Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1636????Accepted Submission(s): 637


Problem Description Think about a plane:

● One straight line can divide a plane into two regions.
● Two lines can divide a plane into at most four regions.
● Three lines can divide a plane into at most seven regions.
● And so on...

Now we have some figure constructed with two parallel rays in the same direction, joined by two straight segments. It looks like a character “M”. You are given N such “M”s. What is the maximum number of regions that these “M”s can divide a plane ?

?
Input The first line of the input is T (1 ≤ T ≤ 100000), which stands for the number of test cases you need to solve.

Each case contains one single non-negative integer, indicating number of “M”s. (0 ≤ N ≤ 1012) ?
Output For each test case, print a line “Case #t: ”(without quotes, t means the index of the test case) at the beginning. Then an integer that is the maximum number of regions N the “M” figures can divide. ?
Sample Input
2
1
2

?

Sample Output
Case #1: 2
Case #2: 19

?

Source 2014 ACM/ICPC Asia Regional Shanghai Online ? 解題:

??? 每一個M四條邊,每條邊最多與原來的邊相交,形成原來的邊數(shù)*4個交點,就多出來相應這么多的面,因為原來M內部也有一個面,故還需加一。

??? 所以,F(xiàn)(n)=F(n-1)+4*4*(n-1)+1。不斷迭代可以將這條公式化成F(n)=8*n*n-7*n+1。因為數(shù)據(jù)范圍很大,所以要用大數(shù)。

??? 直接用公式配合C++大數(shù)模板T了。于是,我用JAVA大數(shù)類交了一發(fā),1900ms,不得不說時間卡得真緊。上網一查,原來JAVA的讀入輸出是能夠優(yōu)化的,詳見這篇博客。我自己用大數(shù)交了一下800ms,不過貌似也可以在大數(shù)乘上優(yōu)化。


代碼(JAVA):

import java.io.*;
import java.util.*;
import java.math.*;
;public class Main {
	public static void main(String args[]) 
	{
		Scanner cin = new Scanner(System.in);
        int t=cin.nextInt();
        for(int i=1;i<=t;i=i+1)
        {
        	BigInteger ans,tmp;
        	BigInteger n=cin.nextBigInteger();
        	ans=n.multiply(n);
        	ans=ans.multiply(BigInteger.valueOf(8));
        	tmp=n.multiply(BigInteger.valueOf(7));
        	ans=ans.subtract(tmp);
        	ans=ans.add(BigInteger.ONE);
        	System.out.println("Case #"+i+": "+ans);
        }
	}
}

代碼(JAVA優(yōu)化版):

import java.io.*;
import java.util.*;
import java.math.*;
;public class Main {
	public static void main(String args[]) 
	{
		Scanner sc = new Scanner(new BufferedInputStream(System.in));
		PrintWriter cout=new PrintWriter(System.out);
        int t=sc.nextInt();
        for(int i=1;i<=t;i=i+1)
        {
        	BigInteger ans,tmp;
        	BigInteger n=sc.nextBigInteger();
        	ans=n.multiply(n);
        	ans=ans.multiply(BigInteger.valueOf(8));
        	tmp=n.multiply(BigInteger.valueOf(7));
        	ans=ans.subtract(tmp);
        	ans=ans.add(BigInteger.ONE);
        	cout.println("Case #"+i+": "+ans);
        }
        cout.flush();
	}
}


代碼(C++大數(shù)模板):

#include 
#include 
#include 
#include
#include 
using namespace std; 

#define MAXN 9999
#define MAXSIZE 10
#define DLEN 4

class BigNum
{ 
private: 
	int a[500];    //可以控制大數(shù)的位數(shù) 
	int len;       //大數(shù)長度
public: 
	BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //構造函數(shù)
	BigNum(const int);       //將一個int類型的變量轉化為大數(shù)
	BigNum(const char*);     //將一個字符串類型的變量轉化為大數(shù)
	BigNum(const BigNum &);  //拷貝構造函數(shù)
	BigNum &operator=(const BigNum &);   //重載賦值運算符,大數(shù)之間進行賦值運算

	friend istream& operator>>(istream&,  BigNum&);   //重載輸入運算符
	friend ostream& operator<<(ostream&,  BigNum&);   //重載輸出運算符

	BigNum operator+(const BigNum &) const;   //重載加法運算符,兩個大數(shù)之間的相加運算 
	BigNum operator-(const BigNum &) const;   //重載減法運算符,兩個大數(shù)之間的相減運算 
	BigNum operator*(const BigNum &) const;   //重載乘法運算符,兩個大數(shù)之間的相乘運算 
	BigNum operator/(const int   &) const;    //重載除法運算符,大數(shù)對一個整數(shù)進行相除運算

	BigNum operator^(const int  &) const;    //大數(shù)的n次方運算
	int    operator%(const int  &) const;    //大數(shù)對一個int類型的變量進行取模運算    
	bool   operator>(const BigNum & T)const;   //大數(shù)和另一個大數(shù)的大小比較
	bool   operator>(const int & t)const;      //大數(shù)和一個int類型的變量的大小比較

	void print();       //輸出大數(shù)
}; 
BigNum::BigNum(const int b)     //將一個int類型的變量轉化為大數(shù)
{ 
	int c,d = b;
	len = 0;
	memset(a,0,sizeof(a));
	while(d > MAXN)
	{
		c = d - (d / (MAXN + 1)) * (MAXN + 1); 
		d = d / (MAXN + 1);
		a[len++] = c;
	}
	a[len++] = d;
}
BigNum::BigNum(const char*s)     //將一個字符串類型的變量轉化為大數(shù)
{
	int t,k,index,l,i;
	memset(a,0,sizeof(a));
	l=strlen(s);   
	len=l/DLEN;
	if(l%DLEN)
		len++;
	index=0;
	for(i=l-1;i>=0;i-=DLEN)
	{
		t=0;
		k=i-DLEN+1;
		if(k<0)
			k=0;
		for(int j=k;j<=i;j++)
			t=t*10+s[j]-'0';
		a[index++]=t;
	}
}
BigNum::BigNum(const BigNum & T) : len(T.len)  //拷貝構造函數(shù)
{ 
	int i; 
	memset(a,0,sizeof(a)); 
	for(i = 0 ; i < len ; i++)
		a[i] = T.a[i]; 
} 
BigNum & BigNum::operator=(const BigNum & n)   //重載賦值運算符,大數(shù)之間進行賦值運算
{
	int i;
	len = n.len;
	memset(a,0,sizeof(a)); 
	for(i = 0 ; i < len ; i++) 
		a[i] = n.a[i]; 
	return *this; 
}
istream& operator>>(istream & in,  BigNum & b)   //重載輸入運算符
{
	char ch[MAXSIZE*4];
	int i = -1;
	in>>ch;
	int l=strlen(ch);
	int count=0,sum=0;
	for(i=l-1;i>=0;)
	{
		sum = 0;
		int t=1;
		for(int j=0;j<4&&i>=0;j++,i--,t*=10)
		{
			sum+=(ch[i]-'0')*t;
		}
		b.a[count]=sum;
		count++;
	}
	b.len =count++;
	return in;

}
ostream& operator<<(ostream& out,  BigNum& b)   //重載輸出運算符
{
	int i;  
	cout << b.a[b.len - 1]; 
	for(i = b.len - 2 ; i >= 0 ; i--)
	{ 
		cout.width(DLEN); 
		cout.fill('0'); 
		cout << b.a[i]; 
	} 
	return out;
}

BigNum BigNum::operator+(const BigNum & T) const   //兩個大數(shù)之間的相加運算
{
	BigNum t(*this);
	int i,big;      //位數(shù)   
	big = T.len > len ? T.len : len; 
	for(i = 0 ; i < big ; i++) 
	{ 
		t.a[i] +=T.a[i]; 
		if(t.a[i] > MAXN) 
		{ 
			t.a[i + 1]++; 
			t.a[i] -=MAXN+1; 
		} 
	} 
	if(t.a[big] != 0)
		t.len = big + 1; 
	else
		t.len = big;   
	return t;
}
BigNum BigNum::operator-(const BigNum & T) const   //兩個大數(shù)之間的相減運算 
{  
	int i,j,big;
	bool flag;
	BigNum t1,t2;
	if(*this>T)
	{
		t1=*this;
		t2=T;
		flag=0;
	}
	else
	{
		t1=T;
		t2=*this;
		flag=1;
	}
	big=t1.len;
	for(i = 0 ; i < big ; i++)
	{
		if(t1.a[i] < t2.a[i])
		{ 
			j = i + 1; 
			while(t1.a[j] == 0)
				j++; 
			t1.a[j--]--; 
			while(j > i)
				t1.a[j--] += MAXN;
			t1.a[i] += MAXN + 1 - t2.a[i]; 
		} 
		else
			t1.a[i] -= t2.a[i];
	}
	t1.len = big;
	while(t1.a[t1.len - 1] == 0 && t1.len > 1)
	{
		t1.len--; 
		big--;
	}
	if(flag)
		t1.a[big-1]=0-t1.a[big-1];
	return t1; 
} 

BigNum BigNum::operator*(const BigNum & T) const   //兩個大數(shù)之間的相乘運算 
{ 
	BigNum ret; 
	int i,j,up; 
	int temp,temp1;   
	for(i = 0 ; i < len ; i++)
	{ 
		up = 0; 
		for(j = 0 ; j < T.len ; j++)
		{ 
			temp = a[i] * T.a[j] + ret.a[i + j] + up; 
			if(temp > MAXN)
			{ 
				temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); 
				up = temp / (MAXN + 1); 
				ret.a[i + j] = temp1; 
			} 
			else
			{ 
				up = 0; 
				ret.a[i + j] = temp; 
			} 
		} 
		if(up != 0) 
			ret.a[i + j] = up; 
	} 
	ret.len = i + j; 
	while(ret.a[ret.len - 1] == 0 && ret.len > 1)
		ret.len--; 
	return ret; 
} 
BigNum BigNum::operator/(const int & b) const   //大數(shù)對一個整數(shù)進行相除運算
{ 
	BigNum ret; 
	int i,down = 0;   
	for(i = len - 1 ; i >= 0 ; i--)
	{ 
		ret.a[i] = (a[i] + down * (MAXN + 1)) / b; 
		down = a[i] + down * (MAXN + 1) - ret.a[i] * b; 
	} 
	ret.len = len; 
	while(ret.a[ret.len - 1] == 0 && ret.len > 1)
		ret.len--; 
	return ret; 
}
int BigNum::operator %(const int & b) const    //大數(shù)對一個int類型的變量進行取模運算    
{
	int i,d=0;
	for (i = len-1; i>=0; i--)
	{
		d = ((d * (MAXN+1))% b + a[i])% b;  
	}
	return d;
}
BigNum BigNum::operator^(const int & n) const    //大數(shù)的n次方運算
{
	BigNum t,ret(1);
	int i;
	if(n<0)
		exit(-1);
	if(n==0)
		return 1;
	if(n==1)
		return *this;
	int m=n;
	while(m>1)
	{
		t=*this;
		for( i=1;i<<1<=m;i<<=1)
		{
			t=t*t;
		}
		m-=i;
		ret=ret*t;
		if(m==1)
			ret=ret*(*this);
	}
	return ret;
}
bool BigNum::operator>(const BigNum & T) const   //大數(shù)和另一個大數(shù)的大小比較
{ 
	int ln; 
	if(len > T.len)
		return true; 
	else if(len == T.len)
	{ 
		ln = len - 1; 
		while(a[ln] == T.a[ln] && ln >= 0)
			ln--; 
		if(ln >= 0 && a[ln] > T.a[ln])
			return true; 
		else
			return false; 
	} 
	else
		return false; 
}
bool BigNum::operator >(const int & t) const    //大數(shù)和一個int類型的變量的大小比較
{
	BigNum b(t);
	return *this>b;
}

void BigNum::print()    //輸出大數(shù)
{ 
	int i;   
	cout << a[len - 1]; 
	for(i = len - 2 ; i >= 0 ; i--)
	{ 
		cout.width(DLEN); 
		cout.fill('0'); 
		cout << a[i]; 
	} 
	cout << endl;
}
int main(void)
{
	int t;
	BigNum n,ans;      
    cin>>t;
	for(int i=1;i<=t;i++)
	{
		cin>>n;
		cout<<"Case #"<


本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
關閉
關閉