www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 智能硬件 > 智能硬件
[導(dǎo)讀]今天,小編將在這篇文章中為大家?guī)頇C(jī)器學(xué)習(xí)的有關(guān)報(bào)道,通過閱讀這篇文章,大家可以對(duì)機(jī)器學(xué)習(xí)具備清晰的認(rèn)識(shí),主要內(nèi)容如下。

今天,小編將在這篇文章中為大家?guī)?a href="/tags/機(jī)器學(xué)習(xí)" target="_blank">機(jī)器學(xué)習(xí)的有關(guān)報(bào)道,通過閱讀這篇文章,大家可以對(duì)機(jī)器學(xué)習(xí)具備清晰的認(rèn)識(shí),主要內(nèi)容如下。

一、機(jī)器學(xué)習(xí)關(guān)鍵概念

1.特征選擇與工程

優(yōu)化機(jī)器學(xué)習(xí)模型的重要一步是優(yōu)化。 我們開發(fā)的模型需要以最佳狀態(tài)執(zhí)行,而要確保做到這一點(diǎn)的一種方法是使用最佳功能來訓(xùn)練模型。

包括每個(gè)特征并不總是有用的。 有些特征可能與我們嘗試預(yù)測(cè)的變量沒有有意義的統(tǒng)計(jì)關(guān)系,而另一些特征可能彼此緊密相關(guān)。 這兩種情況都將噪聲引入訓(xùn)練階段,這可能會(huì)降低模型性能。 特征選擇是選擇最佳特征以包含在訓(xùn)練階段中的過程。

同樣,原始形式的特征可能無法提供足夠的有意義的數(shù)據(jù)來訓(xùn)練性能模型。 另外,某些特征根本不能以其原始形式使用,一個(gè)很好的例子就是基于日期/時(shí)間的功能。 機(jī)器學(xué)習(xí)模型不能使用日期或時(shí)間戳作為特征,我們需要首先從日期中導(dǎo)出有意義的特征,才能包含此信息。 我們可以使用整數(shù)形式的日期部分(例如月,日或星期數(shù)),或計(jì)算兩個(gè)日期之間的差,以提供算法可以理解的模式。 這就是所謂的特征工程。

2.訓(xùn)練

監(jiān)督式機(jī)器學(xué)習(xí)需要標(biāo)記數(shù)據(jù),因?yàn)樗惴ㄊ褂眠@些示例特征值及其對(duì)應(yīng)的標(biāo)記來"學(xué)習(xí)"模式,如果成功,則將使模型能夠準(zhǔn)確地預(yù)測(cè)新的未標(biāo)記數(shù)據(jù)上的標(biāo)記。

在機(jī)器學(xué)習(xí)過程中,學(xué)習(xí)的這一階段稱為訓(xùn)練階段。 在此階段結(jié)束時(shí),您將擁有一個(gè)可用于預(yù)測(cè)新的未標(biāo)記數(shù)據(jù)的標(biāo)簽或值的模型。 訓(xùn)練階段通常稱為擬合模型。

3.調(diào)參

在以前的文章中,介紹功能選擇時(shí),我曾討論過一個(gè)優(yōu)化過程。此過程的另一部分稱為調(diào)參,涉及優(yōu)化算法參數(shù)以找到適合您特定數(shù)據(jù)集的最佳組合。

所有機(jī)器學(xué)習(xí)模型都包含具有多種選項(xiàng)的參數(shù)。 例如,隨機(jī)森林模型具有許多可調(diào)參數(shù)。 一個(gè)示例是n_estimators,它確定森林中樹木的數(shù)量。 通常,樹的數(shù)量越多,結(jié)果越好,但是在特定點(diǎn)(并且這取決于數(shù)據(jù)集),隨著您添加更多的樹,改進(jìn)會(huì)降低。 為您的數(shù)據(jù)集找到最佳樹數(shù)是一種調(diào)整隨機(jī)森林算法參數(shù)的方法。

每種算法都有許多可調(diào)參數(shù),并且每個(gè)參數(shù)都有大量潛在的選項(xiàng)。 幸運(yùn)的是,有自動(dòng)方法可以找到這些參數(shù)的最佳組合,這就是所謂的超參數(shù)優(yōu)化。

二、邊云協(xié)同機(jī)器學(xué)習(xí)面臨什么挑戰(zhàn)

目前邊云協(xié)同機(jī)器學(xué)習(xí)的經(jīng)典模式是:在云上給定一個(gè)數(shù)據(jù)集運(yùn)行機(jī)器學(xué)習(xí)算法構(gòu)建一個(gè)模型,然后將這個(gè)模型不作更改應(yīng)用在多個(gè)邊側(cè)的多次推理任務(wù)上。這種學(xué)習(xí)范式稱為封閉學(xué)習(xí)(也稱孤立學(xué)習(xí)),因?yàn)樗⑽纯紤]其他情景學(xué)習(xí)到的知識(shí)和過去學(xué)習(xí)到的歷史知識(shí)。雖然邊云協(xié)同機(jī)器學(xué)習(xí)技術(shù)的相關(guān)研究和應(yīng)用都有著顯著的進(jìn)展,然而在成本、性能、安全方面仍有諸多挑戰(zhàn):數(shù)據(jù)孤島/小樣本/數(shù)據(jù)異構(gòu)/資源受限。

在邊緣云背景下:(1)不同邊側(cè)數(shù)據(jù)分布總是不斷變化,(2)而邊側(cè)標(biāo)注樣本也往往由于成本較高導(dǎo)致數(shù)量稀少。因而封閉學(xué)習(xí)需不停標(biāo)注樣本并重新訓(xùn)練,這顯然給服務(wù)落地帶來巨大挑戰(zhàn)。這種數(shù)據(jù)分布和數(shù)據(jù)量上的挑戰(zhàn)分配稱為數(shù)據(jù)異構(gòu)和小樣本,屬于邊云協(xié)同機(jī)器學(xué)習(xí)的四大挑戰(zhàn)。

當(dāng)前的封閉學(xué)習(xí)范式可被用于提供數(shù)據(jù)同構(gòu)和大數(shù)據(jù)的服務(wù),但難以處理數(shù)據(jù)異構(gòu)和小樣本的問題,所以并不合適用于建立通用的機(jī)器學(xué)習(xí)系統(tǒng)。伊利諾伊大學(xué)芝加哥分校的劉兵教授也在Frontiers of Computer Science中總結(jié),封閉學(xué)習(xí)范式一系列局限性的根本在于沒有記憶,這導(dǎo)致它通常需要大量的訓(xùn)練樣本。

對(duì)應(yīng)的范式改進(jìn)可以從人類的學(xué)習(xí)過程中得到啟發(fā)??梢钥吹?,人類之所以能夠越學(xué)越聰明,是由于每個(gè)人并非自我封閉地學(xué)習(xí),而是不斷地積累過去學(xué)習(xí)的知識(shí),并利用其他人的知識(shí),學(xué)習(xí)更多知識(shí)。借鑒人類這種學(xué)習(xí)機(jī)制,終身學(xué)習(xí)結(jié)合邊云協(xié)同可以發(fā)展出邊云協(xié)同終身學(xué)習(xí)。

以上所有內(nèi)容便是小編此次為大家?guī)淼挠嘘P(guān)機(jī)器學(xué)習(xí)的所有介紹,如果你想了解更多有關(guān)它的內(nèi)容,不妨在我們網(wǎng)站或者百度、google進(jìn)行探索哦。

聲明:該篇文章為本站原創(chuàng),未經(jīng)授權(quán)不予轉(zhuǎn)載,侵權(quán)必究。
換一批
延伸閱讀

液壓舵機(jī)殼體是航空液壓操縱系統(tǒng)的核心零件 , 內(nèi)部包含大量復(fù)雜流道 。傳統(tǒng)的流道路徑人工設(shè)計(jì)方法效率低下 , 結(jié)果一致性差 。針對(duì)該問題 , 提出了一種基于混合近端策略優(yōu)化(HPP0算法)的流道路徑規(guī)劃算法 。通過分析流...

關(guān)鍵字: 液壓流道規(guī)劃 機(jī)器學(xué)習(xí) HPP0算法 減材制造 液壓舵機(jī)殼體

深入探索這一個(gè)由 ML 驅(qū)動(dòng)的時(shí)域超級(jí)采樣的實(shí)用方法

關(guān)鍵字: 機(jī)器學(xué)習(xí) GPU 濾波器

傳統(tǒng)的網(wǎng)絡(luò)安全防護(hù)手段多依賴于預(yù)先設(shè)定的規(guī)則和特征庫,面對(duì)日益復(fù)雜多變、層出不窮的新型網(wǎng)絡(luò)威脅,往往力不從心,難以做到及時(shí)且精準(zhǔn)的識(shí)別。AI 技術(shù)的融入則徹底改變了這一局面。機(jī)器學(xué)習(xí)算法能夠?qū)A康木W(wǎng)絡(luò)數(shù)據(jù)進(jìn)行深度學(xué)習(xí),...

關(guān)鍵字: 網(wǎng)絡(luò)安全 機(jī)器學(xué)習(xí) 輔助決策

人工智能(AI)和機(jī)器學(xué)習(xí)(ML)是使系統(tǒng)能夠從數(shù)據(jù)中學(xué)習(xí)、進(jìn)行推理并隨著時(shí)間的推移提高性能的關(guān)鍵技術(shù)。這些技術(shù)通常用于大型數(shù)據(jù)中心和功能強(qiáng)大的GPU,但在微控制器(MCU)等資源受限的器件上部署這些技術(shù)的需求也在不斷增...

關(guān)鍵字: 嵌入式系統(tǒng) 人工智能 機(jī)器學(xué)習(xí)

北京——2025年7月30日 自 2018 年以來,AWS DeepRacer 已吸引全球超過 56 萬名開發(fā)者參與,充分印證了開發(fā)者可以通過競(jìng)技實(shí)現(xiàn)能力成長(zhǎng)的實(shí)踐路徑。如今,亞馬遜云科技將通過亞馬遜云科技AI聯(lián)賽,將這...

關(guān)鍵字: AI 機(jī)器學(xué)習(xí)

2025年7月28日 – 專注于引入新品的全球電子元器件和工業(yè)自動(dòng)化產(chǎn)品授權(quán)代理商貿(mào)澤電子 (Mouser Electronics) 持續(xù)擴(kuò)展其針對(duì)機(jī)器學(xué)習(xí) (ML) 工作優(yōu)化的專用解決方案產(chǎn)品組合。

關(guān)鍵字: 嵌入式 機(jī)器學(xué)習(xí) 人工智能

在這個(gè)高速發(fā)展的時(shí)代,無論是健身、競(jìng)技、興趣活動(dòng),還是康復(fù)訓(xùn)練,對(duì)身體表現(xiàn)的感知與理解,正成為提升表現(xiàn)、實(shí)現(xiàn)突破的關(guān)鍵。如今,先進(jìn)技術(shù)正為我們架起一座橋梁,將每一次身體活動(dòng)轉(zhuǎn)化為有價(jià)值的洞察,幫助我們更聰明地訓(xùn)練、更高效...

關(guān)鍵字: 傳感器 機(jī)器學(xué)習(xí) IMU

在科技飛速發(fā)展的當(dāng)下,邊緣 AI 正經(jīng)歷著一場(chǎng)深刻的變革。從最初的 TinyML 微型機(jī)器學(xué)習(xí)探索低功耗 AI 推理,到邊緣推理框架的落地應(yīng)用,再到平臺(tái)級(jí) AI 部署工具的興起以及垂類模型的大熱,我們已經(jīng)成功實(shí)現(xiàn)了 “讓...

關(guān)鍵字: 機(jī)器學(xué)習(xí) 邊緣 AI 無人機(jī)

在AI算力需求指數(shù)級(jí)增長(zhǎng)的背景下,NVIDIA BlueField-3 DPU憑借其512個(gè)NPU核心和400Gbps線速轉(zhuǎn)發(fā)能力,為機(jī)器學(xué)習(xí)推理提供了革命性的硬件卸載方案。通過將PyTorch模型量化至INT8精度...

關(guān)鍵字: PyTorch 機(jī)器學(xué)習(xí) DPU

中國,北京,2025年7月17日——隨著AI迅速向邊緣領(lǐng)域挺進(jìn),對(duì)智能邊緣器件的需求隨之激增。然而,要在小尺寸的微控制器上部署強(qiáng)大的模型,仍是困擾眾多開發(fā)者的難題。開發(fā)者需要兼顧數(shù)據(jù)預(yù)處理、模型選擇、超參數(shù)調(diào)整并針對(duì)特定...

關(guān)鍵字: 邊緣AI 嵌入式 機(jī)器學(xué)習(xí)
關(guān)閉