電池組監(jiān)控平臺設計
1、電池監(jiān)控系統(tǒng)整體結構
電池組監(jiān)控平臺的整體結構如圖1 所示。本平臺設計采用分布式CAN 總線結構,首先,LTC6802 用于實現(xiàn)對單體電壓的采集以及串聯(lián)電池組的被動均衡控制;主控芯片負責接收來自LTC6802 的電壓采集信息,并對LTC6802 的相關參數(shù)進行設置,此外MCU 還用于實現(xiàn)電池包節(jié)點溫度以及電流的采集;最后MCU 將電池包的組態(tài)信息發(fā)送到CAN 通信網(wǎng)絡。
圖1 電池組監(jiān)控平臺整體結構
2、LTC6802 與MCU 的連接電路設計
LTC6802 的外圍電路及其與微控制器之間的連接電路如圖2 所示。本電路中MCU 選取的是Freescale 系列單片機MC9S08DZ60,其主要功能是進行電流和溫度采集、接收來自LTC6802 的信息并將電池包組態(tài)信息發(fā)送到分布式CAN 通信網(wǎng)絡中。
LTC6802 可通過其自身與SPI 兼容的串行接口實現(xiàn)與MCU 的通信。對于LTC6802 而言,CSBI 為片選信號;SDO 為串行數(shù)據(jù)輸出;SDI 為串行數(shù)據(jù)輸入;SCKI 為串行時鐘輸入。
此外,為了保證通信過程穩(wěn)定可靠,本設計中還引入了靜電干擾抑制電路,見圖2 中的D7-D15.該電路由8 個二極管和一個齊納二極管組成,實際也可以采用專用的ESD 靜電保護器件PRTR5V0U4D 來實現(xiàn)。
MCU 的另一項任務是將電池包組態(tài)信息發(fā)送到CAN 通信網(wǎng)絡中。在此本設計選取了CAN 隔離驅動芯片ISO1050,見圖2 中的U1.為了進一步提高CAN 通信的抗干擾性能,在平臺的CAN 輸出端還采用了瞬態(tài)電壓抑制芯片PSM712。
3、電壓采集及均衡電路設計
LTC6802 最主要的功能是實現(xiàn)對電池組內單體電壓的檢測以及在單體過壓狀態(tài)下的均衡控制。LTC6802 具有12 位ADC,可實現(xiàn)對多達12 節(jié)串聯(lián)單體的電壓檢測,芯片外圍的電壓采集電路也比較簡單,只需將單體的正負極分別接入芯片對應的單體電壓輸入端即可,為了抑制電壓信號中的高頻噪聲,電路中還加入了RC 低通濾波環(huán)節(jié)。此外,LTC6802 還具有MOSFET 驅動輸出能力,該驅動輸出端內置了10k 的上拉電阻,可用于驅動外部MOSFET。
對于串聯(lián)電池組中的單體n 而言,其對應的電壓采集電路和均衡控制電路如圖3 所示,其中上圖為電壓采集電路,下圖為均衡控制電路。圖中CELLn 和CELLn-1 分別接到單體n的正極和負極;Cn 和Cn-1 為LTC6802 電壓采集輸入端;DCn為LTC6802 的MOSFET 驅動輸出端。當單體n 出現(xiàn)過壓。
4、溫度采集電路設計
電池包節(jié)點溫度也是組態(tài)信息中的重要參數(shù)。在本平臺中,節(jié)點溫度的檢測由MCU 實現(xiàn),設計每個單體取一個節(jié)點,共計可實現(xiàn)對12 個節(jié)點的溫度檢測。溫度采集電路如圖4 所示,圖中給出了節(jié)點1 的連接電路。首先,設計中選取熱敏電阻RT103 作為溫度傳感原件,將溫度信號轉換為電壓信號;接著,電壓信號輸入模擬開關器件CD4067D,可通過MCU 配置其ABCD 四個控制端對輸入信號進行選通,并由其公共端即管腳1 輸出;最后,模擬開關輸出的信號經(jīng)RC 濾波及限幅處理后輸入到MCU 的AD 輸入端,節(jié)點溫度采集得以實現(xiàn)。
結論
本文基于電池監(jiān)控芯片LTC6802 以及Freescale 系列微控制器MC9S08DZ60,設計了一套面向串聯(lián)鋰離子電池組的監(jiān)控平臺。論文結合芯片特點及平臺應用場合,分別對電壓檢測電路、均衡控制電路、溫度采集電路、SPI 通信及CAN 通信電路進行了具體的設計。該平臺充分利用了LTC6802 集成度高、電壓采集精度高以及抗干擾能力強的特點,很大程度上改善了傳統(tǒng)的電池監(jiān)控電路存在的電壓采集精度差和電路結構復雜的問題??梢詳嘌裕?在EV/HEV 產(chǎn)業(yè)中,這種基于LTC6802 的電池組監(jiān)控平臺具有很強的應用價值和良好的應用前景時,Q1 將導通對其放電,放出的電能會消耗在電阻R1 上。