在這篇文章中,我將構(gòu)建典型的 CAN 驅(qū)動器拓撲結(jié)構(gòu),并說明為什么端接對于與 CAN 的正確通信如此重要。 國際標準化組織 (ISO) 11898 CAN 標準規(guī)定,CAN 網(wǎng)絡(luò)的物理線為特性阻抗為 120Ω 的單雙絞線電纜。此外,標準規(guī)定總線的兩端必須用等于電纜特性阻抗的電阻器端接。
選擇降壓轉(zhuǎn)換器中的輸出電容通?;谒璧妮敵黾y波電壓水平。在許多情況下,計算出的電容可能相當小,只允許使用單個陶瓷電容器。此外,由于陶瓷電容器具有非常低的等效串聯(lián)電阻 (ESR),因此它們對輸出紋波的貢獻將很小。這很好,因為它可以降低成本,所以電容越小越好。
永磁直流(PMDC)電機在要求高效率、高起動轉(zhuǎn)矩和線性轉(zhuǎn)速/轉(zhuǎn)矩的應(yīng)用中提供了一種相對簡單可靠的直流驅(qū)動解決方案。隨著鐵氧體和稀土磁體材料以及電子控制技術(shù)的發(fā)展,PMDC電機是一種具有成本競爭力的解決方案,尤其在高啟動電流和轉(zhuǎn)矩要求的應(yīng)用。永磁直流電機區(qū)別于其他直流電機的一個設(shè)計特點是用永磁體代替繞組磁場,它消除了在磁場繞組中單獨勵磁以及伴隨的電氣損耗。
如果電機的初始速度和啟動時間不是時間關(guān)鍵的,并且在應(yīng)用中可以接受更長的啟動時間,另一種方法是在啟動期間將隔離式 DC/DC 轉(zhuǎn)換器的輸出電壓鉗位一段比電機的電氣時間常數(shù)。使用固定頻率控制器,您可以鉗制最大占空比。在電感-電感-電容 (LLC) 諧振轉(zhuǎn)換器等變頻轉(zhuǎn)換器中,您可以鉗位最小開關(guān)頻率。
SiC MOSFET 在開關(guān)狀態(tài)下工作。然而,了解其在線性狀態(tài)下的行為是有用的,這可能發(fā)生在驅(qū)動器發(fā)生故障的情況下,或者出于某些目的,當設(shè)計者編程時會發(fā)生這種情況。
鋰離子電池對不良處理很敏感。當我們將電池充電至低于制造商定義的裕量時,可能會發(fā)生火災(zāi)、爆炸和其他危險情況。 鋰離子電池在正常使用的過程中,其內(nèi)部進行電能與化學能相互轉(zhuǎn)化的化學正反應(yīng)。但在某些條件下,如對其過充電、過放電或過電流工作時,就很容易會導(dǎo)致電池內(nèi)部發(fā)生化學副反應(yīng);該副反應(yīng)加劇后,會嚴重影響電池的性能與使用壽命,并可能產(chǎn)生大量的氣體,使電池內(nèi)部的壓力迅速增大后爆炸起火而導(dǎo)致安全問題。
電池和能量電池會隨著老化而失去容量。如果電池或電池的容量過低,我們的設(shè)備也可能很快停止工作。我們可以使用圖 1 中的電路來測量電池的放電時間。該電路使用機電時鐘和 DVM(數(shù)字電壓表)。測試前電池應(yīng)充滿電。該電路以固定電流對電池進行放電,并測量電池從 100% 放電至 0% 所需的時間。
假設(shè)我們需要測試 1.5V、AA 尺寸的堿性電池。我們可以應(yīng)用短路并測量電流,也可以測量開路電壓,但兩種方法都不能正確測試電池。大約 250 mA 的合適測試電流可為我們提供更合理的測試。我們可以在 1.5V 下使用 6Ω 電阻負載,如果電池狀況良好,它會在 25°C 的環(huán)境溫度下產(chǎn)生 1.46V 的輸出電壓。劣質(zhì)電池可能產(chǎn)生低于 1.2V 的電壓。給定負載,1.2V 的輸出電流將為 200 mA 而不是 250 mA。電池將只有 80% 的滿載電流。相反,我們可以使用圖 1 中的電路 來產(chǎn)生恒流負載。
在之前的文章,我們討論了低側(cè)電流測量——當分流電阻器位于負載(或電源)和地之間時。低端檢測的優(yōu)點是共模電壓基本上為 0V,這是一種非常簡單直接的電流測量方法。最大的缺點是負載(或電源)通過分流電阻器與系統(tǒng)接地隔離(參見圖 1)。這可以防止檢測到可能導(dǎo)致系統(tǒng)損壞的負載短路接地。這也意味著它是單端測量——稍后會詳細介紹。
測量系統(tǒng)中的電流是監(jiān)控系統(tǒng)狀態(tài)的基本但強大的工具。借助先進的技術(shù),電子或電氣系統(tǒng)的物理尺寸大大縮小,降低了功耗和成本,而在性能方面并沒有太大的折衷。每個電子設(shè)備都在監(jiān)控自己的健康和狀態(tài),這些診斷提供了管理系統(tǒng)所需的重要信息,甚至決定了其未來的設(shè)計升級。
我最近與您分享了TI 全新 Piccolo? F28004x 微控制器 (MCU) 系列的生產(chǎn)公告,該系列針對電源控制應(yīng)用進行了優(yōu)化。 Piccolo F28004x 用于高性能電源控制的主要特性包括:
在本系列的第一部分中,我討論了與電流檢測放大器規(guī)格相關(guān)的概念,以及如何使用應(yīng)用要求來縮小器件選擇范圍。在本期中,我將討論電流范圍如何幫助得出分流電阻值,以及電流范圍和分流值如何與器件性能相結(jié)合,從而在精度和功耗之間進行權(quán)衡。 直到最近發(fā)布的 TI INA250電流檢測放大器(稍后會詳細介紹),電流實際上并沒有通過電流檢測放大器。因此,被測量的電流范圍并不直接決定設(shè)備規(guī)格。
在本系列的前幾期中,我討論了實現(xiàn)備選方案以及這些決策如何影響設(shè)備參數(shù)以及受設(shè)備參數(shù)影響。在這篇文章中,我將解釋設(shè)備參數(shù)和系統(tǒng)因素如何影響可實現(xiàn)的精度。
在光網(wǎng)絡(luò)模塊和其他通信系統(tǒng)中,您可能必須精確控制某個組件的溫度。例如,激光器需要特定的溫度才能發(fā)射特定波長的光。圖 1 所示的熱電冷卻器 (TEC) 是一種常用設(shè)備,用于加熱或冷卻此類系統(tǒng)中的組件。
與傳統(tǒng)的脈寬調(diào)制 (PWM) 電源轉(zhuǎn)換器不同,諧振轉(zhuǎn)換器的輸出電壓通過頻率調(diào)制進行調(diào)節(jié)。因此,諧振轉(zhuǎn)換器的設(shè)計方法將不同于 PWM 轉(zhuǎn)換器。 LLC 諧振轉(zhuǎn)換器透過設(shè)計電路產(chǎn)生諧振的方式,實現(xiàn)功率開關(guān)元件的軟切換,能顯著的提升轉(zhuǎn)換器效率,因此廣受業(yè)界喜愛。但你是否也覺得 LLC 諧振轉(zhuǎn)換器的補償難以調(diào)整,Transient Response 太慢?系統(tǒng)頻寬太低?單純的電壓回授已經(jīng)無法滿足設(shè)計需求,但是受限于 LLC 無法使用峰值電流模式控制,沒辦法設(shè)計更優(yōu)化的回授與補償器?