www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > > 亞德諾半導(dǎo)體
[導(dǎo)讀]本文將采用一種與傳統(tǒng)方法不同的方式介紹連續(xù)時(shí)間Σ-Δ(CTSD)ADC技術(shù),以便信號鏈設(shè)計(jì)人員了解這種簡單易用的新型精密ADC技術(shù),將其想像成一個(gè)連接了某些已知組件的簡單系統(tǒng)。采用傳統(tǒng)方法解釋CTSD技術(shù)概念時(shí),都是先理解離散時(shí)間∑-Δ(DTSD)調(diào)制器環(huán)路的基本原理,然后用等效...

以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!本文將采用一種與傳統(tǒng)方法不同的方式介紹連續(xù)時(shí)間Σ-Δ (CTSD) ADC技術(shù),以便信號鏈設(shè)計(jì)人員了解這種簡單易用的新型精密ADC技術(shù),將其想像成一個(gè)連接了某些已知組件的簡單系統(tǒng)。

采用傳統(tǒng)方法解釋CTSD技術(shù)概念時(shí),都是先理解離散時(shí)間∑-Δ (DTSD)調(diào)制器環(huán)路的基本原理,然后用等效的連續(xù)時(shí)間元件來替換離散時(shí)間環(huán)路元件。雖然通過這種方法可以深入了解∑-Δ功能,但我們的目標(biāo)是更直觀地了解精密CTSD ADC內(nèi)在優(yōu)勢的背后原因。首先,我們將概述一種逐步構(gòu)建CTSD調(diào)制器環(huán)路的方法,首先采用常見的閉環(huán)反相放大器配置,然后與ADC和DAC組合在一起。最后,我們將評估所構(gòu)建電路的基本∑-Δ功能。


第1步:回顧閉環(huán)反相放大器配置


CTSD ADC的一個(gè)關(guān)鍵優(yōu)勢是它提供一個(gè)易于驅(qū)動的連續(xù)電阻輸入,而非傳統(tǒng)的前置開關(guān)電容采樣器。反相放大器電路具有類似的輸入阻抗概念,我們將其用作構(gòu)建CTSD調(diào)制器環(huán)路的起始模塊。


閉環(huán)運(yùn)算放大器配置一直是以高保真度復(fù)制模擬輸入的首選方法,圖1所示為其中一種常見的運(yùn)算放大器配置,稱為反相放大器配置。衡量保真度的一個(gè)指標(biāo)是輸出與輸入增益的比值,采用∑-Δ術(shù)語表示,也稱為信號傳遞函數(shù)(STF)。確定影響STF的參數(shù)需要進(jìn)行電路分析。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖1.采用反相放大器配置的閉環(huán)運(yùn)算放大器。


為了鞏固我們的數(shù)學(xué)知識,我們來回顧一下著名VOUT ?VIN的由來。首先,我們假設(shè)運(yùn)算放大器A的開環(huán)增益無窮大。根據(jù)這一假設(shè),運(yùn)算放大器的負(fù)輸入Vn將處于地電位。在這里應(yīng)用基爾霍夫定律


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


將其映射到VOUT和VIN,我們得到增益或STF為


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


接下來,我們放棄不切實(shí)際的無限增益假設(shè),在運(yùn)算放大器的有限增益A下重新推導(dǎo)STF,則STF如下式所示


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


在這里,教科書通常會描述每個(gè)參數(shù)RIN、Rf和A的靈敏度。在本示例中,我們繼續(xù)構(gòu)建CTSD環(huán)路。


第2步:將離散部件引入放大器


我們的ADC信號鏈需要數(shù)字版本的VIN。下一步,我們要在此電路中引入數(shù)字部件。我們沒有按傳統(tǒng)方式直接在輸入信號端放置一個(gè)采樣ADC,而是嘗試其他方法,在放大器輸出之后放置一個(gè)典型ADC器件來獲取數(shù)字信號數(shù)據(jù)。但是,ADC的輸出不能直接用作反饋,因?yàn)樗仨毷悄M電壓。因此,我們需要在ADC之后放置一個(gè)電壓數(shù)模轉(zhuǎn)換器(DAC),如圖2所示。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖2.在反相放大器配置中引入ADC和DAC。


采用ADC和DAC后,VOUT仍能表示VIN,但由于增加了數(shù)字部件,因此存在量化誤差。所以,從VIN到VOUT的信號流沒有變化。這里要注意的一點(diǎn)是,為了使環(huán)路功能相對于0 V保持對稱,并簡化數(shù)學(xué)推導(dǎo),我們這樣選擇ADC和DAC的基準(zhǔn)電壓,如下所示


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


第3步:引入模擬累加器 — 積分器


圖2中的閉環(huán)配置是否穩(wěn)定?ADC和DAC均為在采樣時(shí)鐘MCLK下工作的離散元件。設(shè)計(jì)無延遲ADC或DAC一直是轉(zhuǎn)換器專家無法實(shí)現(xiàn)的夢想。由于這些環(huán)路元件采用時(shí)序控制,通常在一個(gè)時(shí)鐘沿進(jìn)行輸入采樣,在另一個(gè)時(shí)鐘沿進(jìn)行處理。因此,ADC和DAC組合輸出VOUT(即圖2中的反饋)需要延遲1個(gè)時(shí)鐘周期后才可用。


這種反饋延遲對穩(wěn)定性有影響嗎?我們來看看VIN是如何傳輸?shù)?。為簡化起見,我們假設(shè)VIN = 1,RIN = 1,Rf = 1,運(yùn)算放大器A的增益為100。在第一個(gè)時(shí)鐘周期,輸入電壓為1,DAC輸出反饋VOUT或VOUTDAC為0,并且在下一個(gè)時(shí)鐘沿前不可用。當(dāng)我們跟蹤放大器和ADC的輸入和輸出反饋之間的誤差時(shí),可以看到輸出一直呈指數(shù)增長,這在技術(shù)上稱為失控問題。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

表1.時(shí)鐘沿采樣


這是因?yàn)锳DC輸入對放大器獲得的瞬時(shí)誤差產(chǎn)生的影響;也就是說,甚至在獲得反饋之前,就能確定ADC會產(chǎn)生這種影響,而這是我們不希望的。如果ADC影響累積的平均誤差數(shù)據(jù),使得由于1個(gè)時(shí)鐘周期延遲反饋導(dǎo)致的誤差達(dá)到平均值,系統(tǒng)的輸出將受限。


積分器是平均累加器的等效模擬器件。環(huán)路增益仍然很高,但僅在低頻下很高,或者說在目標(biāo)頻率帶寬下很高。這確保ADC不會出現(xiàn)任何可能導(dǎo)致失控情況的瞬時(shí)誤差。因此,現(xiàn)在將環(huán)路中的放大器改為積分器后接ADC和DAC,如圖3a所示。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖3.(a) 將積分器引入環(huán)路。(b) 重新布局環(huán)路,重點(diǎn)將DOUTADC作為輸出。


第4步:簡化反饋電阻


這里的目標(biāo)元件是DOUTADC,我們來重新布局環(huán)路元件,重點(diǎn)是將DOUTADC作為系統(tǒng)的輸出,如圖3b所示。接下來,我們來考慮DAC和Rf路徑的簡化。為此,我們先深入了解一下DAC。DAC的作用是將DIN數(shù)字信號轉(zhuǎn)換為與基準(zhǔn)電壓成比例的等效模擬電流或電壓。為了進(jìn)一步擴(kuò)大基準(zhǔn)電壓源連續(xù)性的優(yōu)勢,我們考慮采用一個(gè)基于梯形電阻的通用DAC架構(gòu),該電阻對于基準(zhǔn)電壓源沒有開關(guān)負(fù)載。我們來看測溫電阻DAC,根據(jù)等式5,它將DIN轉(zhuǎn)換為DAC電流。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


其中 VREF = VREFP – VREFM,即DAC的總基準(zhǔn)電壓。

  • DIN = 測溫代碼中的數(shù)字輸入

  • Rf = 反饋電阻;拆分為每個(gè)單位元件

  • ?N = 位數(shù)


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖4.通用測溫電阻DAC。


為了獲得電壓輸出,使用跨阻配置的運(yùn)算放大器進(jìn)行IV轉(zhuǎn)換,如圖4所示。因此,


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


回到圖3b的離散環(huán)路,此VOUTDAC再次通過反相放大器的反饋電阻被轉(zhuǎn)換回電流Ifb,即信號流為IDAC → VOUTDA C → Ifb。通過數(shù)學(xué)式表示為:


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


從上面的信號流和公式可以看出,將VOUTDAC轉(zhuǎn)換為Ifb是一個(gè)冗余步驟,可以繞過。刪除冗余元件,并且為了簡單起見,將(VREFP – VREFM)表示為VREF,我們來重新繪制環(huán)路,如圖5所示。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖5.刪除冗余I至V轉(zhuǎn)換部分和反饋電阻。


瞧!我們構(gòu)建了一個(gè)一階Σ-Δ環(huán)路!將所有已知元件即反相放大器、ADC和DAC接在一起。


第5步:了解過采樣


至此我們掌握了CTSD環(huán)路的構(gòu)建,但尚未認(rèn)識到這個(gè)特殊環(huán)路的獨(dú)特之處。首先來了解過采樣。ADC數(shù)據(jù)僅在有足夠的采樣和數(shù)字化數(shù)據(jù)點(diǎn)來提取或解讀模擬信號信息時(shí)才有用。奈奎斯特準(zhǔn)則建議,為了忠實(shí)地重構(gòu)輸入信號,ADC的采樣頻率至少應(yīng)該是信號頻率的兩倍。如果我們在這個(gè)最低要求基礎(chǔ)上繼續(xù)增加更多的數(shù)據(jù)點(diǎn),將會進(jìn)一步減少解讀誤差。遵循這一思路,在∑-Δ中選擇的采樣頻率要比建議的奈奎斯特頻率高得多,這稱為過采樣。過采樣將總噪聲分散到更高的頻率范圍,有助于減少目標(biāo)頻帶中的量化噪聲,如圖6所示。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖6.奈奎斯特采樣和過采樣之間的噪聲譜密度比較。


第6步:了解噪聲整形


當(dāng)∑-Δ專家使用噪聲傳遞函數(shù)(NTF)或噪聲整形等術(shù)語時(shí),信號鏈設(shè)計(jì)人員不應(yīng)該感到迷茫,我們的下一步將幫助他們直觀地了解∑-Δ轉(zhuǎn)換器特有的這些術(shù)語。我們來回顧一下簡單的反相放大器配置以及放大器輸出端產(chǎn)生的誤差Qe,如圖7所示。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖7.反相放大器配置中產(chǎn)生誤差。


此誤差在輸出端的貢獻(xiàn)因素可量化為


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


從數(shù)學(xué)公式可以看出,誤差Qe由放大器的開環(huán)增益衰減,這再次表明了閉環(huán)的優(yōu)勢。


這種對閉環(huán)優(yōu)勢的理解可以延伸到CTSD環(huán)路中ADC的量化誤差Qe,此誤差是由于積分器輸出端連續(xù)信號的數(shù)字化引起的,如圖8所示。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖8.∑-Δ環(huán)路中產(chǎn)生量化誤差Qe。


我們現(xiàn)在可以直觀地得出結(jié)論,此Qe可通過積分器衰減。積分器TF為|HINTEG (f)|= 1/|s × RC| = 1/2πfRC,其相應(yīng)的頻域表示如圖9所示。其曲線等同于在低頻下具有高增益的低通濾波器曲線,增益隨頻率的增加呈線性減小。相應(yīng)地,Qe的衰減變化與高通濾波器的表現(xiàn)類似。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖9.積分器傳遞函數(shù)。


此衰減因數(shù)的數(shù)學(xué)表示是噪聲傳遞函數(shù)。讓我們暫時(shí)忽略ADC中的采樣器和DAC中的開關(guān)。NTF即VOUTADC?/ Qe可通過與反相放大器配置一樣的方式來評估,其在頻域中的變化曲線與高通濾波器曲線類似,如圖10所示。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


在目標(biāo)頻帶中,量化噪聲被完全衰減并推至"與我們無關(guān)"的高頻。這就是所謂的噪聲整形。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖10.沒有采樣器時(shí)的噪聲傳遞函數(shù)——具有高通濾波器曲線。


由于環(huán)路中有采樣器,量化噪聲整形類比保持不變。不同的是,NTF頻率響應(yīng)將在每個(gè)fS倍數(shù)處復(fù)制圖像,如圖10所示,從而在采樣頻率的每個(gè)整數(shù)倍處產(chǎn)生陷波。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖11.CTSD ADC的噪聲傳遞函數(shù)。


∑-Δ架構(gòu)的獨(dú)特之處在于,它將一個(gè)積分器和一個(gè)DAC環(huán)路放置在一個(gè)原始ADC(例如,4位ADC)周圍,通過過采樣和噪聲整形大幅減少目標(biāo)頻率帶寬中的量化噪聲,使這個(gè)原始ADC變成一個(gè)16位或24位精密ADC。

這些一階CTSD ADC的基本原理現(xiàn)在可以擴(kuò)展到任意階的調(diào)制器環(huán)路。采樣頻率、原始ADC規(guī)格和環(huán)路階數(shù)是受ADC性能要求驅(qū)動的主要設(shè)計(jì)決策因素。


第7步:利用數(shù)字濾波器完成CTSD調(diào)制器


一般來講,在ADC信號鏈中,數(shù)字化數(shù)據(jù)由外部數(shù)字控制器進(jìn)行后處理,以提取任何信號信息。我們現(xiàn)在知道,在∑-Δ架構(gòu)中,將對信號進(jìn)行過采樣。如果將此過采樣數(shù)字?jǐn)?shù)據(jù)直接提供給外部控制器,就需要處理大量冗余數(shù)據(jù)。這會導(dǎo)致數(shù)字控制器設(shè)計(jì)中的功率和電路板空間成本開銷過大。因此,在數(shù)據(jù)提供給數(shù)字控制器之前,在不影響性能的情況下,應(yīng)有效地降低數(shù)據(jù)采樣。此過程稱為抽取,由數(shù)字抽取濾波器完成。圖11所示為具有片內(nèi)數(shù)字抽取濾波器的典型CTSD調(diào)制器。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖12.(a) 從模擬輸入到數(shù)字輸出的CTSD ADC調(diào)制器環(huán)路的方框圖。(b) 調(diào)制器輸出端和數(shù)字濾波器輸出端的輸入信號的頻譜表示。


圖12b所示為帶內(nèi)模擬輸入信號的頻率響應(yīng)。在調(diào)制器的輸出端,我們看到對量化噪聲進(jìn)行噪聲整形后,目標(biāo)頻帶中的量化噪聲大幅降低。數(shù)字濾波器有助于衰減超出此目標(biāo)頻率帶寬的整形后噪聲,這樣最終的數(shù)字輸出DOUT將處于奈奎斯特采樣速率。


第8步:了解CTSD ADC的時(shí)鐘靈敏度


現(xiàn)在,我們知道CTSD ADC如何保持輸入信號的連續(xù)完整性,這大大簡化了信號鏈的設(shè)計(jì)。此架構(gòu)也有一些限制,主要是處理采樣時(shí)鐘MCLK。CTSD調(diào)制器環(huán)路的工作原理是累積IIN和IDAC之間的誤差電流。此積分值中的任何誤差都會導(dǎo)致環(huán)路中的ADC對此誤差進(jìn)行采樣,并在輸出中反映出來。對于我們的一階積分器環(huán)路,在恒定IIN和IDAC的Ts采樣時(shí)間段的積分值表示為


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!


對于0輸入,會影響此積分誤差的參數(shù)包括


  • MCLK頻率:如等式10所示,如果MCLK頻率縮放,控制積分斜率的RC系數(shù)也需要重新調(diào)整以得到相同的積分值。這意味著CTSD調(diào)制器針對固定的MCLK時(shí)鐘頻率進(jìn)行調(diào)諧,無法支持變化的MCLK。

  • MCLK抖動:DAC代碼以及IDAC會改變每個(gè)時(shí)鐘時(shí)間段Ts。如果IDAC時(shí)間段隨機(jī)改變,平均積分值就會不斷變化,如圖13所示。因此,采樣時(shí)鐘時(shí)間段中以抖動形式出現(xiàn)的任何誤差都會影響調(diào)制器環(huán)路的性能。


以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!

圖13.CTSD調(diào)制器的時(shí)鐘靈敏度。


出于上述原因,CTSD ADC對MCLK的頻率和抖動敏感。但是,ADI已經(jīng)找到了解決這些誤差問題的方法。例如,生成精確的低抖動MCLK并在系統(tǒng)中傳送到ADC的挑戰(zhàn),可以通過在ADC附近使用一個(gè)低成本的本地晶體振蕩器來解決。固定采樣頻率周圍的誤差問題已通過使用創(chuàng)新的異步采樣速率轉(zhuǎn)換(ASRC)解決,該轉(zhuǎn)換無需考慮固定采樣MCLK,可以為數(shù)字控制器提供獨(dú)立可變的數(shù)字輸出數(shù)據(jù)速率。本系列后續(xù)文章將詳細(xì)介紹更多相關(guān)信息。


第9步:一切準(zhǔn)備就緒,可以向伙伴們解釋CTSD概念了!


本文重點(diǎn)介紹從第1步到第6步使用閉環(huán)運(yùn)算放大器配置概念構(gòu)建調(diào)制器環(huán)路的見解。圖11a也有助于我們看清這些優(yōu)勢。


CTSD ADC的輸入阻抗等同于反相放大器的輸入阻抗,它是電阻性的,且易于驅(qū)動。通過使用創(chuàng)新技術(shù),使得調(diào)制器環(huán)路的DAC所使用的基準(zhǔn)電壓源也成為電阻性。ADC的采樣器位于積分器之后,并非直接放在輸入端,從而可實(shí)現(xiàn)對目標(biāo)頻帶之外干擾源的固有混疊抑制。

以一種非傳統(tǒng)的方式,帶你了解CTSD精密ADC技術(shù)!“新鮮的”不見得是“新的

ADI呼吁通過二手交換來滿足大家對“新鮮感”的追求~

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護(hù)是驅(qū)動電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機(jī)驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計(jì)工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉