應(yīng)該如何提高反激式電源的交叉調(diào)整率
在現(xiàn)實(shí)情況中,寄生元件會(huì)共同降低未調(diào)節(jié)輸出的負(fù)載調(diào)整。我將進(jìn)一步探討寄生電感的影響,以及如何使用同步整流代替二極管來大幅提高反激式電源的交叉調(diào)整率。
例如,一個(gè)反激式電源可分別從一個(gè) 48V 輸入產(chǎn)生兩個(gè) 1 A 的 12V 輸出,如圖 1 的簡(jiǎn)化仿真模型所示。理想的二極管模型具有零正向壓降,電阻可忽略不計(jì)。變壓器繞組電阻可忽略不計(jì),只有與變壓器引線串聯(lián)的寄生電感才能建模。這些電感是變壓器內(nèi)的漏電感,以及印刷電路板(PCB)印制線和二極管內(nèi)的寄生電感。當(dāng)設(shè)置這些電感時(shí),兩個(gè)輸出相互跟蹤,因?yàn)楫?dāng)二極管在開關(guān)周期的 1-D 部分導(dǎo)通時(shí),變壓器的全耦合會(huì)促使兩個(gè)輸出相等。
圖 1 該反激式簡(jiǎn)化模型模擬了漏電感對(duì)輸出電壓調(diào)節(jié)的影響
現(xiàn)在考慮一下,當(dāng)您將 100 nH 的漏電感引入變壓器的兩根二次引線,并且將 3μH 的漏電與初級(jí)繞組串聯(lián)時(shí),將會(huì)發(fā)生什么。這些電感可在電流路徑中建立寄生電感,其中包括變壓器內(nèi)部的漏電感以及 PCB 和其他元件中的電感。當(dāng)初始場(chǎng)效應(yīng)晶體管(FET)關(guān)斷時(shí),初始漏電感仍然有電流流動(dòng),而次級(jí)漏電感開啟初始條件為 0 A 的 1-D 周期。變壓器磁芯上出現(xiàn)基座電壓,所有繞組共用。該基座電壓使初級(jí)漏電中的電流斜降至 0 A,并使次級(jí)漏電電流斜升以將電流傳輸?shù)截?fù)載。當(dāng)兩個(gè)重載輸出時(shí),電流在整個(gè) 1-D 周期持續(xù)流動(dòng),輸出電壓平衡良好,如圖 2 所示。然而,當(dāng)一個(gè)重載輸出和另一個(gè)輕載輸出時(shí),輕載輸出上的輸出電容傾向于從該基座電壓發(fā)生峰值充電;因?yàn)殡娏餮杆倩厣搅?,其輸出二極管將停止導(dǎo)通。請(qǐng)參見圖 3 中的波形。這些寄生電感的峰值充電交叉調(diào)節(jié)影響通常比整流器正向壓降單獨(dú)引起的要差得多。
圖 2 輸出施加重載時(shí),次級(jí)繞組電流在兩個(gè)次級(jí)繞組中流動(dòng)
圖 3 重載次級(jí) 1 和輕載次級(jí) 2,基座電壓對(duì)次級(jí) 2 的輸出電容器進(jìn)行峰值充電
無論負(fù)載如何,同步整流器有助于通過在整個(gè) 1-D 周期內(nèi)強(qiáng)制電流流入兩個(gè)繞組來減輕此問題。
圖 4 顯示了具有與圖 3 相同負(fù)載條件的波形,但用理想的同步整流器代替了理想的二極管。由于同步整流器在基座電壓降低后保持良好狀態(tài),因此即使出現(xiàn)嚴(yán)重不平衡的負(fù)載,兩個(gè)輸出電壓也能很好地相互跟蹤。
雖然次級(jí) 2 的平均電流非常小,但均方根(RMS)含量仍然可以相當(dāng)高。這是因?yàn)?,與圖 3 中的理想二極管不同,同步整流器在整個(gè) 1-D 周期期間可強(qiáng)制連續(xù)電流流動(dòng)。有趣的是,電流在這一周期的大部分時(shí)間內(nèi)必須是負(fù)的,以保證低平均電流。
顯然,您犧牲更佳的調(diào)節(jié)以實(shí)現(xiàn)更高的循環(huán)電流。然而,這并不一定意味著總損耗會(huì)更高。同步整流器的正向壓降通常遠(yuǎn)低于二極管,因此同步整流器在較高負(fù)載下的效率通常要好得多。