www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁(yè) > 智能硬件 > 人工智能AI
[導(dǎo)讀] 前言 機(jī)器學(xué)習(xí)起源于人工智能,可以賦予計(jì)算機(jī)以傳統(tǒng)編程所無(wú)法實(shí)現(xiàn)的能力,比如飛行器的自動(dòng)駕駛、人臉識(shí)別、計(jì)算機(jī)視覺(jué)和數(shù)據(jù)挖掘等。 機(jī)器學(xué)習(xí)的算法很多。很多時(shí)候困惑人們的是,很多算

前言

機(jī)器學(xué)習(xí)起源于人工智能,可以賦予計(jì)算機(jī)以傳統(tǒng)編程所無(wú)法實(shí)現(xiàn)的能力,比如飛行器的自動(dòng)駕駛、人臉識(shí)別、計(jì)算機(jī)視覺(jué)和數(shù)據(jù)挖掘等。

機(jī)器學(xué)習(xí)的算法很多。很多時(shí)候困惑人們的是,很多算法是一類(lèi)算法,而有些算法又是從其他算法中延伸出來(lái)的。這里,我們從兩個(gè)方面來(lái)給大家介紹,第一個(gè)方面是學(xué)習(xí)的方式,第二個(gè)方面是算法的類(lèi)似性。

學(xué)習(xí)方式

將算法按照學(xué)習(xí)方式分類(lèi)可以讓人們?cè)诮:退惴ㄟx擇的時(shí)候考慮能根據(jù)輸入數(shù)據(jù)來(lái)選擇最合適的算法來(lái)獲得最好的結(jié)果。

監(jiān)督學(xué)習(xí)

 

在監(jiān)督學(xué)習(xí)中,輸入數(shù)據(jù)被稱(chēng)為“訓(xùn)練數(shù)據(jù)”,每組訓(xùn)練數(shù)據(jù)有一個(gè)明確的類(lèi)標(biāo)。在建立預(yù)測(cè)模型的時(shí)候,監(jiān)督學(xué)習(xí)建立一個(gè)學(xué)習(xí)過(guò)程,將預(yù)測(cè)結(jié)果與“訓(xùn)練數(shù)據(jù)”的實(shí)際結(jié)果進(jìn)行比較,不斷的調(diào)整預(yù)測(cè)模型,直到模型的預(yù)測(cè)結(jié)果達(dá)到一個(gè)預(yù)期的準(zhǔn)確率。

監(jiān)督式學(xué)習(xí)的常見(jiàn)應(yīng)用場(chǎng)景如分類(lèi)問(wèn)題和回歸問(wèn)題。常見(jiàn)算法有Linear Regression,LogisTIc Regression,Neural Network,SVMs。

非監(jiān)督學(xué)習(xí)

 

在非監(jiān)督學(xué)習(xí)中,數(shù)據(jù)并未被特別標(biāo)識(shí),學(xué)習(xí)模型是為了推斷出數(shù)據(jù)的一些內(nèi)在結(jié)構(gòu)。

常見(jiàn)的應(yīng)用場(chǎng)景包括關(guān)聯(lián)規(guī)則的學(xué)習(xí)以及聚類(lèi)等。常見(jiàn)算法包括K-means Clustering ,Principal Component Analysis和Anomaly DetecTIon。

半監(jiān)督學(xué)習(xí)

 

在此學(xué)習(xí)方式下,輸入數(shù)據(jù)部分被標(biāo)識(shí),部分沒(méi)有被標(biāo)識(shí),這種學(xué)習(xí)模型可以用來(lái)進(jìn)行預(yù)測(cè),但是模型首先需要學(xué)習(xí)數(shù)據(jù)的內(nèi)在結(jié)構(gòu)以便合理的組織數(shù)據(jù)來(lái)進(jìn)行預(yù)測(cè)。應(yīng)用場(chǎng)景包括分類(lèi)和回歸,算法包括一些對(duì)常用監(jiān)督式學(xué)習(xí)算法的延伸,這些算法首先試圖對(duì)未標(biāo)識(shí)數(shù)據(jù)進(jìn)行建模,在此基礎(chǔ)上再對(duì)標(biāo)識(shí)的數(shù)據(jù)進(jìn)行預(yù)測(cè)。如圖論推理算法(Graph Inference)或者拉普拉斯支持向量機(jī)(Laplacian SVM.)等。

強(qiáng)化學(xué)習(xí)

 

在強(qiáng)化學(xué)習(xí)(Reinforcement Learning)中,輸入數(shù)據(jù)作為對(duì)模型的反饋,不像監(jiān)督模型那樣,輸入數(shù)據(jù)僅僅是作為一個(gè)檢查模型對(duì)錯(cuò)的方式。在強(qiáng)化學(xué)習(xí)中,輸入數(shù)據(jù)直接反饋到模型,模型必須對(duì)此立刻作出調(diào)整。常見(jiàn)的應(yīng)用場(chǎng)景包括動(dòng)態(tài)系統(tǒng)以及機(jī)器人控制等。常見(jiàn)算法包括Q-Learning以及時(shí)間差學(xué)習(xí)(Temporal difference learning)。

在企業(yè)數(shù)據(jù)應(yīng)用的場(chǎng)景下, 人們最常用的可能就是監(jiān)督式學(xué)習(xí)和非監(jiān)督式學(xué)習(xí)的模型。 在圖像識(shí)別等領(lǐng)域,由于存在大量的非標(biāo)識(shí)的數(shù)據(jù)和少量的可標(biāo)識(shí)數(shù)據(jù), 目前半監(jiān)督式學(xué)習(xí)是一個(gè)很熱的話題。 而強(qiáng)化學(xué)習(xí)更多的應(yīng)用在機(jī)器人控制及其他需要進(jìn)行系統(tǒng)控制的領(lǐng)域。

算法類(lèi)似性 回歸算法

 

回歸算法是試圖采用對(duì)誤差的衡量來(lái)探索變量之間的關(guān)系的一類(lèi)算法。回歸算法是統(tǒng)計(jì)機(jī)器學(xué)習(xí)的利器。在機(jī)器學(xué)習(xí)領(lǐng)域,人們說(shuō)起回歸,有時(shí)候是指一類(lèi)問(wèn)題,有時(shí)候是指一類(lèi)算法,這一點(diǎn)常常會(huì)使初學(xué)者有所困惑。常見(jiàn)的回歸算法包括:最小二乘法(Ordinary Least Square),邏輯回歸(LogisTIc Regression),逐步式回歸(Stepwise Regression),多元自適應(yīng)回歸樣條(MulTIvariate Adaptive Regression Splines)以及本地散點(diǎn)平滑估計(jì)(Locally Estimated Scatterplot Smoothing)。

基于核的算法

 

基于核的算法中最著名的莫過(guò)于支持向量機(jī)(SVM)了。 基于核的算法把輸入數(shù)據(jù)映射到一個(gè)高階的向量空間, 在這些高階向量空間里, 有些分類(lèi)或者回歸問(wèn)題能夠更容易的解決。 常見(jiàn)的基于核的算法包括:支持向量機(jī)(Support Vector Machine, SVM), 徑向基函數(shù)(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等。

聚類(lèi)算法

 

聚類(lèi),就像回歸一樣,有時(shí)候人們描述的是一類(lèi)問(wèn)題,有時(shí)候描述的是一類(lèi)算法。聚類(lèi)算法通常按照中心點(diǎn)或者分層的方式對(duì)輸入數(shù)據(jù)進(jìn)行歸并。所以的聚類(lèi)算法都試圖找到數(shù)據(jù)的內(nèi)在結(jié)構(gòu),以便按照最大的共同點(diǎn)將數(shù)據(jù)進(jìn)行歸類(lèi)。常見(jiàn)的聚類(lèi)算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。

降維算法

 

像聚類(lèi)算法一樣,降低維度算法試圖分析數(shù)據(jù)的內(nèi)在結(jié)構(gòu),不過(guò)降低維度算法是以非監(jiān)督學(xué)習(xí)的方式試圖利用較少的信息來(lái)歸納或者解釋數(shù)據(jù)。這類(lèi)算法可以用于高維數(shù)據(jù)的可視化或者用來(lái)簡(jiǎn)化數(shù)據(jù)以便監(jiān)督式學(xué)習(xí)使用。常見(jiàn)的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回歸(Partial Least Square Regression,PLS)。

集成學(xué)習(xí)算法

 

集成算法用一些相對(duì)較弱的學(xué)習(xí)模型獨(dú)立地就同樣的樣本進(jìn)行訓(xùn)練,然后把結(jié)果整合起來(lái)進(jìn)行整體預(yù)測(cè)。集成算法的主要難點(diǎn)在于究竟集成哪些獨(dú)立的較弱的學(xué)習(xí)模型以及如何把學(xué)習(xí)結(jié)果整合起來(lái)。這是一類(lèi)非常強(qiáng)大的算法,同時(shí)也非常流行。常見(jiàn)的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,隨機(jī)森林(Random Forest)等。(競(jìng)賽中多用到該類(lèi)算法,效果較好)

基于實(shí)例的算法

 

基于實(shí)例的算法常常用來(lái)對(duì)決策問(wèn)題建立模型,這樣的模型常常先選取一批樣本數(shù)據(jù),然后根據(jù)某些近似性把新數(shù)據(jù)與樣本數(shù)據(jù)進(jìn)行比較。通過(guò)這種方式來(lái)尋找最佳的匹配。因此,基于實(shí)例的算法常常也被稱(chēng)為“贏家通吃”學(xué)習(xí)或者“基于記憶的學(xué)習(xí)”。常見(jiàn)的算法包括 k-Nearest Neighbor(KNN), 學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ),以及自組織映射算法(Self-Organizing Map , SOM)。

決策樹(shù)學(xué)習(xí)

 

決策樹(shù)算法根據(jù)數(shù)據(jù)的屬性采用樹(shù)狀結(jié)構(gòu)建立決策模型, 決策樹(shù)模型常常用來(lái)解決分類(lèi)和回歸問(wèn)題。常見(jiàn)的算法包括:分類(lèi)及回歸樹(shù)(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, 隨機(jī)森林(Random Forest)等。

貝葉斯方法

 

貝葉斯方法算法是基于貝葉斯定理的一類(lèi)算法,主要用來(lái)解決分類(lèi)和回歸問(wèn)題。常見(jiàn)算法包括:樸素貝葉斯算法,以及Bayesian Belief Network(BBN)。

人工神經(jīng)網(wǎng)絡(luò)

人工神經(jīng)網(wǎng)絡(luò)算法模擬生物神經(jīng)網(wǎng)絡(luò),是一類(lèi)模式匹配算法。通常用于解決分類(lèi)和回歸問(wèn)題。它是機(jī)器學(xué)習(xí)的一個(gè)龐大的分支。重要的人工神經(jīng)網(wǎng)絡(luò)算法包括:感知器神經(jīng)網(wǎng)絡(luò)(Perceptron Neural Network), 反向傳遞(Back Propagation), Hopfield網(wǎng)絡(luò),自組織映射(Self-Organizing Map, SOM)。(現(xiàn)在的深度學(xué)習(xí)就是由人工神經(jīng)網(wǎng)絡(luò)發(fā)展而來(lái))

深度學(xué)習(xí)

常見(jiàn)的深度學(xué)習(xí)算法包括:受限波爾茲曼機(jī)(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷積網(wǎng)絡(luò)(Convolutional Network), 堆棧式自動(dòng)編碼器(Stacked Auto-encoders)。(發(fā)展至目前,最成功的當(dāng)屬CNN和LSTM。)

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車(chē)的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車(chē)技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車(chē)工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車(chē)。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車(chē) 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶(hù)希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱(chēng),數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱(chēng)"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉