www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 智能硬件 > 機(jī)器視覺
[導(dǎo)讀] 深度學(xué)習(xí)是人工智能的熱點(diǎn)發(fā)展方向之一,將推動(dòng)我們步入控制設(shè)計(jì)和工業(yè)物聯(lián)網(wǎng)的新臺(tái)階。機(jī)器視覺在工業(yè)控制領(lǐng)域極其重要,借助這些技術(shù),使用數(shù)據(jù)驅(qū)動(dòng)部署復(fù)雜的機(jī)器和設(shè)備。 為了比競(jìng)爭(zhēng)對(duì)手更好地服

深度學(xué)習(xí)是人工智能的熱點(diǎn)發(fā)展方向之一,將推動(dòng)我們步入控制設(shè)計(jì)和工業(yè)物聯(lián)網(wǎng)的新臺(tái)階。機(jī)器視覺在工業(yè)控制領(lǐng)域極其重要,借助這些技術(shù),使用數(shù)據(jù)驅(qū)動(dòng)部署復(fù)雜的機(jī)器和設(shè)備。

為了比競(jìng)爭(zhēng)對(duì)手更好地服務(wù)其目標(biāo)客戶,當(dāng)今的嵌入式設(shè)計(jì)團(tuán)隊(duì)正在尋求機(jī)器學(xué)習(xí)(ML)和深度學(xué)習(xí)(DL)等新技術(shù),以便在有限的資源下按時(shí)向市場(chǎng)開發(fā)和部署復(fù)雜的機(jī)器和設(shè)備。借助這些技術(shù),團(tuán)隊(duì)可以使用數(shù)據(jù)驅(qū)動(dòng)的方法構(gòu)建復(fù)雜的單系統(tǒng)或多系統(tǒng)模型。 ML和DL算法不是使用基于物理學(xué)的模型來描述系統(tǒng)的行為,而是透過數(shù)據(jù)推斷出系統(tǒng)的模型。 傳統(tǒng)ML算法適用于處理數(shù)據(jù)量相對(duì)較小且問題的復(fù)雜度較低的情況。 但如果是像自動(dòng)駕駛汽車這樣的大數(shù)據(jù)問題呢? 解決這個(gè)挑戰(zhàn)需要采用DL技術(shù)。 本文介紹了這種新興技術(shù)將如何推動(dòng)我們進(jìn)入控制設(shè)計(jì)和工業(yè)物聯(lián)網(wǎng)(IIoT)應(yīng)用的下一個(gè)時(shí)代。

1 ML技術(shù)在工業(yè)資產(chǎn)狀態(tài)監(jiān)測(cè)中的應(yīng)用

首先考慮機(jī)器學(xué)習(xí)(ML)技術(shù)在工業(yè)資產(chǎn)狀態(tài)監(jiān)測(cè)中的應(yīng)用。 ML有助于將基于狀態(tài)的監(jiān)測(cè)應(yīng)用從被動(dòng)維護(hù)和預(yù)防性維護(hù)轉(zhuǎn)變?yōu)轭A(yù)測(cè)性維護(hù)。 這些技術(shù)常用于檢測(cè)異常行為和診斷問題,并在一定程度上預(yù)測(cè)電機(jī)、水泵和渦輪機(jī)等工業(yè)資產(chǎn)的剩余使用壽命。

基于ML的模型開發(fā)和部署流程如圖1所示。

圖1 基于機(jī)器學(xué)習(xí)的分析流程

看看這個(gè)工作流程是如何用來監(jiān)控電機(jī)的健康狀況的。 數(shù)據(jù)是從加速度計(jì)、熱電偶和連接到電機(jī)的電流傳感器等多種類型的傳感器采集而來。 特征工程步驟通常由兩部分組成: 特征提取和特征約簡(jiǎn)。 特征提取用于從原始數(shù)據(jù)(或波形)中導(dǎo)出有助于了解資產(chǎn)健康情況的信息。 例如,來自電機(jī)的電流信號(hào)的頻譜中嵌入了可用于檢測(cè)故障的信息,如圖2所示。頻譜中不同頻帶上的平均振幅可用作為從電流信號(hào)中提取的特征。 從多個(gè)傳感器提取的特征可能包含冗余信息。 可以使用主成分分析(PCA)等特征約簡(jiǎn)方法來減少最終用于建立模型的特征的數(shù)量。 特征的數(shù)量減少,意味著要使用的ML模型的復(fù)雜性降低了。 減少的特征集表示為向量(或數(shù)組),并輸入到ML算法中,ML算法將用于模型創(chuàng)建步驟。 模型創(chuàng)建和驗(yàn)證是一個(gè)迭代過程,在這個(gè)過程中,您可以嘗試使用幾種ML算法,并選擇最適合您應(yīng)用的算法。

圖2 對(duì)電機(jī)電流信號(hào)進(jìn)行特征約簡(jiǎn)

圖 3 特征工程

無監(jiān)督的ML算法(如高斯混合模型(GMM))可用于模擬電機(jī)的正常行為,并檢測(cè)電機(jī)何時(shí)開始偏離其基線。 無監(jiān)督的方法不需要標(biāo)記數(shù)據(jù)就可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式。 無監(jiān)督的技術(shù)主要用來檢測(cè)電機(jī)的異常,監(jiān)督算法則用于檢測(cè)異常的原因。 在有監(jiān)督的方法中,算法以輸入數(shù)據(jù)和期望輸出的組合表示。 這個(gè)數(shù)據(jù)稱為標(biāo)簽數(shù)據(jù)。 算法會(huì)學(xué)習(xí)函數(shù)將輸入映射到輸出。 用于訓(xùn)練ML算法的數(shù)據(jù)包含在正常和錯(cuò)誤條件下提取的特征。 使用表示電機(jī)狀態(tài)的標(biāo)簽可清楚地標(biāo)識(shí)特征。 常用的監(jiān)督ML算法包括支持向量機(jī)(SVM)、邏輯回歸和人工神經(jīng)網(wǎng)絡(luò)。

傳統(tǒng)ML技術(shù)面臨的挑戰(zhàn)是特征提取過程。 這個(gè)過程需要專業(yè)的領(lǐng)域知識(shí),而且非常容易出錯(cuò),通常是ML工作流程中的故障點(diǎn)。 因此現(xiàn)在越來越多人采用DL算法,因?yàn)樗鼈儫o需使用特征工程步驟。 從傳感器采集的數(shù)據(jù)(原始測(cè)量數(shù)據(jù))可以直接輸入到DL算法中,如下所示。

圖4 深度學(xué)習(xí)工作流程

DL算法基于人工神經(jīng)網(wǎng)絡(luò)。 人工神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法受到生物神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能的啟發(fā)。 這些算法采用相互連接的計(jì)算節(jié)點(diǎn)(人工神經(jīng))組的形式結(jié)構(gòu),而計(jì)算節(jié)點(diǎn)采用層的結(jié)構(gòu)形式。 第一層稱為輸入層,作為與輸入信號(hào)或數(shù)據(jù)的連接接口。 最后一層是輸出層,該層中的神經(jīng)元輸出最終的預(yù)測(cè)或決定。 在輸入層和輸出層之間,有一個(gè)或多個(gè)隱藏層(圖5)。 每一層的輸出通過加權(quán)連接的方式連接到下一層的節(jié)點(diǎn)。 神經(jīng)網(wǎng)絡(luò)通過修改這些權(quán)重來學(xué)習(xí)輸入和輸出之間的映射。 通過使用多個(gè)隱藏層,DL算法可以學(xué)習(xí)需要從輸入數(shù)據(jù)中提取的特征,而不需要將特征明確地輸入到學(xué)習(xí)算法中。 這就稱為特征學(xué)習(xí)。

圖5 前饋人工神經(jīng)網(wǎng)絡(luò)

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉