www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁(yè) > 工業(yè)控制 > 工業(yè)控制
[導(dǎo)讀]前有許多正面人臉的識(shí)別方法,當(dāng)有充分?jǐn)?shù)量的訓(xùn)練樣本時(shí),能取得較好的識(shí)別效果,然而當(dāng)處理單樣本人臉識(shí)別問(wèn)題時(shí),效果則明顯下降。針對(duì)這種情況,提出了基于鏡像奇異值分解的單樣本人臉識(shí)別方法,通過(guò)采用鏡像的方法增加訓(xùn)練樣本信息。實(shí)驗(yàn)表明,在對(duì)人臉圖像進(jìn)行識(shí)別時(shí)取得了較好的效果,并且在一定程度上克服了單樣本條件下姿態(tài)變化對(duì)識(shí)別效果的影響。

自20世紀(jì)90年代以來(lái),人臉識(shí)別技術(shù)已成為計(jì)算機(jī)視覺(jué)、模式識(shí)別和信息技術(shù)等領(lǐng)域研究的熱點(diǎn)課題之一,并且在此基礎(chǔ)上提出了主成分分析PCA(Principal Component Analysis)[1,2]、二維主成分分析2DPCA(Two-Dimensional Principal Component Analysis)[3]、雙方向的二維主成分分析[4]和線性鑒別分析LDA(Linear Discriminant Analysis)[5]等有效的識(shí)別方法。但是,現(xiàn)有的正面人臉圖像的識(shí)別方法,僅當(dāng)有充分?jǐn)?shù)量的有代表性的人臉圖像樣本時(shí)才能取得較好的識(shí)別效果。然而在一些特殊場(chǎng)合,如法律實(shí)施、海關(guān)護(hù)照驗(yàn)證和身份證驗(yàn)證等,每類(lèi)(人)只能得到一幅圖像,此時(shí)就只能用這些數(shù)目有限的圖像去訓(xùn)練人臉識(shí)別系統(tǒng)。若用前面提到的那些方法處理這種訓(xùn)練樣本數(shù)目有限的人臉識(shí)別系統(tǒng),識(shí)別率會(huì)明顯下降,甚至變得不再適用。參考文獻(xiàn)[6]首先對(duì)原始人臉圖像利用奇異值分解,然后運(yùn)用分解得到的較大的幾個(gè)奇異值對(duì)原始人臉圖像近似重構(gòu),并且將重構(gòu)人臉圖像和原始圖像一起作為訓(xùn)練樣本,從而對(duì)原訓(xùn)練樣本個(gè)數(shù)進(jìn)行擴(kuò)展,再對(duì)增加了訓(xùn)練樣本后的樣本集運(yùn)用2DPCA方法進(jìn)行特征抽取,該方法可取得較好的識(shí)別效果。但是由于人臉圖像存在姿態(tài)、表情等變化,而且這個(gè)變化越大,算法的識(shí)別誤差也越大?;诖?,本文提出了一種基于圖像鏡像和奇異值分解的鏡像奇異值分解方法。該方法首先對(duì)人臉圖像做鏡像變換,然后對(duì)原始人臉圖像和鏡像圖像分別做奇異值分解,接著用較大的幾個(gè)奇異值分別對(duì)原人臉圖像重構(gòu),將這些重構(gòu)圖像、原圖像以及鏡像圖像一起作為訓(xùn)練樣本運(yùn)用(2D)2PCA方法對(duì)其進(jìn)行特征抽取,最后使用基于最小歐氏距離的分類(lèi)方法對(duì)樣本集進(jìn)行分類(lèi)識(shí)別。由于考慮了人臉圖像的旋轉(zhuǎn)等姿態(tài)變化,在ORL人臉數(shù)據(jù)庫(kù)上的實(shí)驗(yàn)結(jié)果表明,該方法比參考文獻(xiàn)[6]中的方法有更好的識(shí)別性能。
1 方法的思想與實(shí)現(xiàn)
1.1 鏡像人臉圖像生成

    增加鏡像圖像可以部分消除由于頭部的旋轉(zhuǎn)對(duì)人臉識(shí)別造成的影響,而且人臉圖像是基本對(duì)稱(chēng)的[7],則此時(shí)可以考慮將原始人臉圖像A以其垂直中心軸由式(1)作鏡像變換,從而對(duì)原始訓(xùn)練人臉圖像的個(gè)數(shù)進(jìn)行擴(kuò)展。
    A1=A×M  (1)
其中,M為反對(duì)角線元素為1、其余元素為0的方陣。
1.2 基于奇異值分解的人臉表示

1.3 基于(2D)2PCA的特征提取
 
    訓(xùn)練時(shí),將每張訓(xùn)練人臉圖像Ak(k=1,2,…,M)分別向Z和X投影,得到訓(xùn)練樣本的投影特征矩陣Ck(k=1,2,…,M);同時(shí),在測(cè)試時(shí),對(duì)于任一測(cè)試人臉圖像A,首先使用式(5)得到特征矩陣C,然后使用基于最小歐氏距離的最近鄰分類(lèi)器對(duì)測(cè)試人臉圖像進(jìn)行分類(lèi)識(shí)別。本文算法的結(jié)構(gòu)流程圖如圖1所示。

2 實(shí)驗(yàn)結(jié)果及分析
2.1 實(shí)驗(yàn)所用人臉庫(kù)

    本實(shí)驗(yàn)所用人臉數(shù)據(jù)庫(kù)為ORL人臉庫(kù),該人臉數(shù)據(jù)庫(kù)由40人、每人分別由10幅大小均為112×92的256灰度級(jí)的正面人臉圖像組成,這些圖像是在不同時(shí)間、不同光照、不同表情和不同姿態(tài)下拍攝的。圖2給出了ORL人臉數(shù)據(jù)庫(kù)中的部分標(biāo)準(zhǔn)人臉圖像及其鏡像圖像。


2.2 實(shí)驗(yàn)方法及結(jié)果
    為了對(duì)各方法的識(shí)別效果進(jìn)行對(duì)比,本文分別對(duì)單樣本PCA算法、SVD+PCA算法、參考文獻(xiàn)[6]中提出的SVD+2DPCA算法、SVD+(2D)2PCA以及本文提出的方法在ORL人臉數(shù)據(jù)庫(kù)上進(jìn)行10組實(shí)驗(yàn),即分別將每個(gè)人的第1,2,3,...,10幅共40幅人臉圖像作為訓(xùn)練樣本,而其余的360幅圖像作為測(cè)試樣本進(jìn)行分類(lèi)識(shí)別,然后取其平均識(shí)別率,測(cè)試結(jié)果如表1所示。以下(2D)2PCA方法中行方向降維維數(shù)為10,即只對(duì)其列方向維數(shù)做變化。

    不同的特征提取方法的確會(huì)對(duì)系統(tǒng)識(shí)別率的提高有一定的影響,為了驗(yàn)證本文方法識(shí)別率的提高不僅僅依賴(lài)于(2D)2PCA特征提取方法的選擇,而是由于鏡像人臉圖像樣本的增加,實(shí)驗(yàn)中分別對(duì)單樣本PCA算法、SVD+PCA算法、SVD+2DPCA算法、SVD+(2D)2PCA算法以及本文算法在ORL人臉庫(kù)上,同樣分別將每個(gè)人的第1,2,3,...,10幅圖像作為訓(xùn)練人臉圖像,而將其余的360幅作為測(cè)試樣本,取同一特征向量維數(shù)下的10組實(shí)驗(yàn)的平均識(shí)別率作為其最終識(shí)別率,測(cè)試結(jié)果如圖3所示。

    同時(shí),為了比較各參考文獻(xiàn)方法和本文方法在不同測(cè)試樣本數(shù)目情況下的穩(wěn)定性[9],做如下的測(cè)試實(shí)驗(yàn):在ORL人臉庫(kù)上分別取每個(gè)人的第1,2,3,...,10張圖像作為訓(xùn)練樣本,分10組實(shí)驗(yàn),同時(shí)在每組實(shí)驗(yàn)中分別以除訓(xùn)練樣本以外的前2,3,4,...,9張圖像作為測(cè)試樣本,計(jì)算每組實(shí)驗(yàn)的平均識(shí)別率,實(shí)驗(yàn)結(jié)果如圖4所示。

2.3 實(shí)驗(yàn)結(jié)果分析
    由表1可以看出,在不同的訓(xùn)練樣本條件下,本文提出的方法的識(shí)別效果明顯高于參考文獻(xiàn)中提出的其他幾種方法,這主要是由于加入鏡像信息后可以減小由于姿態(tài)變化對(duì)人臉識(shí)別的影響。從圖3中的實(shí)驗(yàn)數(shù)據(jù)也可以看出SVD+2DPCA和SVD+(2D)2PCA方法在特征維數(shù)增大時(shí),兩種方法的識(shí)別效果差不多,但是都不如本文所提方法,而且由SVD+(2D)2PCA方法和本文方法的比較曲線可以得知,本文方法識(shí)別率的提高主要是依賴(lài)于人臉圖像鏡像信息的加入,而不是僅僅由于(2D)2PCA特征提取方法的選擇。由圖4可知,隨著測(cè)試樣本個(gè)數(shù)的增加,特別是PCA方法的識(shí)別率較低而且其穩(wěn)定性較弱,與SVD+2DPCA以及SVD+(2D)2PCA方法相比,本文所提方法在保證識(shí)別率高于其他方法的同時(shí),也表現(xiàn)出了較強(qiáng)的穩(wěn)定性。
    通過(guò)對(duì)原始人臉圖像增加鏡像圖像來(lái)擴(kuò)充訓(xùn)練人臉樣本數(shù),提出了一種基于鏡像奇異值分解的新方法。實(shí)驗(yàn)表明,與其他單樣本人臉識(shí)別方法相比,本文所提出的方法具有較高的識(shí)別率,在一定程度上克服了由于人臉姿態(tài)的變化對(duì)識(shí)別結(jié)果的影響,并取得了較好的識(shí)別效果。但是,現(xiàn)有的基于單樣本人臉識(shí)別的方法其識(shí)別率一般都不高,有效算法的提出還有待進(jìn)一步的研究。
參考文獻(xiàn)
[1]  ZHAO W, CHELLAPPA R, ROSENFELD A, et al. Face recgnition: a literature survey[J]. ACM  Computing Surveys, 2003,35(4):399-458.
[1]  TURK M, PENTLAND A. Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3(1):71-86.
[2]  TURK M, PENTLAND A. Face recognition using eigenfaces[A]. Proceedings of IEEE Computer Vision and Pattern Recognition[C]. Hawaii, USA: IEEE CS Press, 1991:    586-591.
[3]  YANG J, ZHANG D. Two_dimensional PCA: a new approach to appearance-based face representation and  Recognition[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004,26(1):131-137.
[4]  ZHANG Dao Qiang, ZHOU Zhi Hua. (2D)2PCA:Two-directional two-dimensional PCA for efficient face representation and recognition[J]. Neurocomputing,2005(69): 224-231.
[5]  BELHUMEUR V, HESPANHA J, KRIEGMAN D. Eigenfaces vs fisherfaces: recognition using class specific linear  projection[J]. IEEE Transactions on Pattern Analysis and  Machine Intelligence, 1997,19(7):711-720.
[6]  LU Chong, LIU Wan Quan, SEN Jian. An face recognition with only one training sample[J]. Proceedings of the 25th Chinese Control Conference 7-11 August, 2006
[7]  楊瓊,丁曉青.對(duì)稱(chēng)主分量分析及其在人臉識(shí)別中的應(yīng)用[J].計(jì)算機(jī)學(xué)報(bào),2003,26(9):1146-1151.
[8]  ZHANG D, CHEN S, ZHOU Z H. A new face recognition method based on SVD perturbation for single example    image per person[J].Applied Mathematics and computation, 2005,163(2):895-907.
[9]  吳朋.基于虛擬信息的單樣本分塊人臉識(shí)別[J].計(jì)算機(jī)工程與應(yīng)用,2009,45(19):146-149.

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

美國(guó)紐約州阿蒙克2022年10月20日 /美通社/ -- IBM(NYSE: IBM)發(fā)布 2022 年第三季度業(yè)績(jī)報(bào)告。 IBM 董事長(zhǎng)兼首席執(zhí)行官 Arvind Kri...

關(guān)鍵字: IBM 軟件 BSP 云平臺(tái)

成都2022年10月19日 /美通社/ -- 近期,平安養(yǎng)老險(xiǎn)積極籌備個(gè)人養(yǎng)老金的產(chǎn)品設(shè)計(jì)和系統(tǒng)開(kāi)發(fā)工作,發(fā)展多樣化的養(yǎng)老金融產(chǎn)品,推動(dòng)商業(yè)養(yǎng)老保險(xiǎn)、個(gè)人養(yǎng)老金、專(zhuān)屬商業(yè)養(yǎng)老保險(xiǎn)等產(chǎn)品供給。 搭養(yǎng)老政策東風(fēng) ...

關(guān)鍵字: 溫度 BSP 東風(fēng) 大眾

廣東佛山2022年10月19日 /美通社/ -- 空間是人居生活的基礎(chǔ)單元,承載著生存與活動(dòng)的最基本功能。而對(duì)于理想空間的解構(gòu)意義卻在物理性容器之外,體現(xiàn)出人們對(duì)于空間和生活深層關(guān)系的思考,同時(shí)也塑造著人與空間的新型連接...

關(guān)鍵字: 溫度 BSP 智能化 進(jìn)程

上海2022年10月19日 /美通社/ -- 10月17日晚間,安集科技披露業(yè)績(jī)預(yù)告。今年前三季度,公司預(yù)計(jì)實(shí)現(xiàn)營(yíng)業(yè)收入7.54億元至8.33億元,同比增長(zhǎng)60.24%至77.03%;歸母凈利潤(rùn)預(yù)計(jì)為1.73億...

關(guān)鍵字: 電子 安集科技 BSP EPS

北京2022年10月19日 /美通社/ -- 10月18日,北京市經(jīng)濟(jì)和信息化局發(fā)布2022年度第一批北京市市級(jí)企業(yè)技術(shù)中心創(chuàng)建名單的通知,諾誠(chéng)健華正式獲得"北京市企業(yè)技術(shù)中心"認(rèn)定。 北京市企業(yè)技...

關(guān)鍵字: BSP ARMA COM 代碼

北京2022年10月18日 /美通社/ -- 10月14日,國(guó)際數(shù)據(jù)公司(IDC)發(fā)布《2022Q2中國(guó)軟件定義存儲(chǔ)及超融合市場(chǎng)研究報(bào)告》,報(bào)告顯示:2022年上半年浪潮超融合銷(xiāo)售額同比增長(zhǎng)59.4%,近5倍于...

關(guān)鍵字: IDC BSP 數(shù)字化 數(shù)據(jù)中心

上海2022年10月18日 /美通社/ -- 2022年9月5日,是首都銀行集團(tuán)成立60周年的紀(jì)念日。趁著首都銀行集團(tuán)成立60周年與首都銀行(中國(guó))在華深耕經(jīng)營(yíng)12年的“大日子”,圍繞作為外資金融機(jī)構(gòu)對(duì)在華戰(zhàn)略的構(gòu)想和業(yè)...

關(guān)鍵字: 數(shù)字化 BSP 供應(yīng)鏈 控制

東京2022年10月18日  /美通社/ -- NIPPON EXPRESS HOLDINGS株式會(huì)社(NIPPON EXPRESS HOLDINGS, INC.)旗下集團(tuán)公司上海通運(yùn)國(guó)際物流有限公司(Nipp...

關(guān)鍵字: 溫控 精密儀器 半導(dǎo)體制造 BSP

廣州2022年10月18日 /美通社/ -- 10月15日,第 132 屆中國(guó)進(jìn)出口商品交易會(huì)("廣交會(huì)")于"云端"開(kāi)幕。本屆廣交會(huì)上高新技術(shù)企業(yè)云集,展出的智能產(chǎn)品超過(guò)140,...

關(guān)鍵字: 中國(guó)智造 BSP 手機(jī) CAN

摘要:局部放電監(jiān)測(cè)是目前高壓電氣設(shè)備亟需解決的重要問(wèn)題。由于局部放電信號(hào)往往含有大量白噪聲,會(huì)影響對(duì)真實(shí)放電信號(hào)的識(shí)別,因此提出了一種基于EMD與SVD結(jié)合的S變換改進(jìn)模型進(jìn)行去噪的新方法。該方法主要由經(jīng)驗(yàn)?zāi)B(tài)分解(EM...

關(guān)鍵字: EMD S變換 奇異值分解

工業(yè)控制

13479 篇文章

關(guān)注

發(fā)布文章

編輯精選

技術(shù)子站

關(guān)閉