如何設(shè)計MOSFET驅(qū)動電路電源?電源設(shè)計實例、技巧分享!
在這篇文章中,小編將為大家?guī)?a href="/tags/MOSFET" target="_blank">MOSFET驅(qū)動電路電源的設(shè)計。如果你對本文即將要講解的內(nèi)容存在一定興趣,不妨繼續(xù)往下閱讀哦。
一、MOSFET驅(qū)動電路的電源設(shè)計
1、變壓器隔離電源
當(dāng)使用MOSFET驅(qū)動由上下橋臂構(gòu)成的H橋、三相逆變器或類似的電路時,上橋臂和下橋臂的電源必須彼此隔離。
圖3.1顯示了使用變壓器的電源示例。
驅(qū)動MOSFET的下臂的電源可以共用。因此,H橋需要三個電源,而三相橋需要四個電源。
2、自舉電路
由二極管和電容器組成的自舉電路可以用來代替浮地電源。當(dāng)MOSFET由逆變器或類似電路的上臂和下臂驅(qū)動時,可以在每個相中使用自舉電容C,如圖3.2所示,而不是浮置電源。最初,必須接通下臂中的器件以通過虛線的路徑從下臂的電源對電容C充電。下臂MOSFET每次導(dǎo)通時,電容C通過該路徑充電。由于上臂器件的占空比與電容C上存儲的電荷量有一定的關(guān)系,因此上臂的占空比存在限制。與輸出電壓的情況一樣,上臂的柵極電壓波動使其對噪聲敏感。因此,在設(shè)計上臂門電路時應(yīng)謹(jǐn)慎。
3、電荷泵
電荷泵由振蕩電路、二極管和電容組成。電荷泵每一級提升的電壓存儲在電容器中,如圖3所示。當(dāng)MOSFET由上下橋臂構(gòu)成時,點荷泵可用于驅(qū)動高邊。與自舉電路不同,電荷泵對輸出器件的占空比沒有任何限制。
二、電源設(shè)計技巧
1、反激式電源中的鐵氧體磁放大器
對于兩個輸出端都提供實際功率(5V 2A 和 12V 3A,兩者都可實現(xiàn)± 5%調(diào)節(jié))的雙路輸出反激式電源來說,當(dāng)電壓達(dá)到 12V 時會進入零負(fù)載狀態(tài),而無法在 5%限度內(nèi)進行調(diào)節(jié)。線性穩(wěn)壓器是一個可實行的解決方案,但由于價格昂貴且會降低效率,仍不是理想的解決方案。
我們建議的解決方案是在 12V 輸出端使用一個磁放大器,即便是反激式拓?fù)浣Y(jié)構(gòu)也可使用。為了降低成本,建議使用鐵氧體磁放大器。
然而,鐵氧體磁放大器的控制電路與傳統(tǒng)的矩形磁滯回線材料(高磁導(dǎo)率材料)的控制電路有所不用。鐵氧體的控制電路(D1 和 Q1)可吸收電流以便維持輸出端供電。該電路已經(jīng)過全面測試。變壓器繞組設(shè)計為 5V 和 13V 輸出。該電路在實現(xiàn) 12V 輸出± 5%調(diào)節(jié)的同時,甚至還可以達(dá)到低于 1W 的輸入功率(5V 300 mW 和 12V 零負(fù)載)。
2、使用現(xiàn)有的消弧電路提供過流保護
考慮一下 5V 2A 和 12V 3A 反激式電源。該電源的關(guān)鍵規(guī)范之一便是當(dāng) 12V 輸出端達(dá)到空載或負(fù)載極輕時,對 5V 輸出端提供過功率保護(OPP)。這兩個輸出端都提出了± 5%的電壓調(diào)節(jié)要求。
對于通常的解決方案來說,使用檢測電阻會降低交叉穩(wěn)壓性能,并且保險絲的價格也不菲。而現(xiàn)在已經(jīng)有了用于過壓保護(OVP)的消弧電路。該電路能夠同時滿足 OPP 和穩(wěn)壓要求,使用部分消弧電路即可實現(xiàn)該功能。
從下圖可以看出,R1 和 VR1 形成了一個 12V 輸出端有源假負(fù)載,這樣可以在 12V 輸出端輕載時實現(xiàn) 12V 電壓調(diào)節(jié)。在 5V 輸出端處于過載情況下時,5V 輸出端上的電壓將會下降。假負(fù)載會吸收大量電流。R1 上的電壓下降可用來檢測這一大量電流。Q1 導(dǎo)通并觸發(fā) OPP 電路。
經(jīng)由小編的介紹,不知道你對MOSFET驅(qū)動電路電源設(shè)計是否充滿了興趣?如果你想對它有更多的了解,不妨嘗試度娘更多信息或者在我們的網(wǎng)站里進行搜索哦。