www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 工業(yè)控制 > 《機電信息》
[導(dǎo)讀]摘要:如今配電網(wǎng)的測量設(shè)備越來越豐富,除了傳統(tǒng)的監(jiān)控和數(shù)據(jù)采集(SCADA)測量系統(tǒng),微型同步相量測量單元(μPMU)也逐漸應(yīng)用于配電網(wǎng),但這兩種測量設(shè)備的數(shù)據(jù)存在較大差異。為此,利用賦權(quán)法平衡數(shù)據(jù)精度差異,利用設(shè)置緩沖區(qū)使得數(shù)據(jù)時間斷面達成一致,利用插值算法彌補數(shù)據(jù)刷新頻率不一致的問題,使得兩種系統(tǒng)數(shù)據(jù)可以有效融合,并考慮三相不對稱的實際情況,借助支路電流法進行數(shù)據(jù)融合下的配電網(wǎng)三相狀態(tài)估計,最終結(jié)果顯示所提方法具有較高的實用價值。

引言

狀態(tài)估計算法主要通過增加數(shù)據(jù)的冗余度來提高狀態(tài)估計的準確度,因此,狀態(tài)估計也被稱為濾波。傳統(tǒng)的狀態(tài)估計主要用于輸電網(wǎng),而在配電網(wǎng)中應(yīng)用相對較少,直到最近幾年,配電網(wǎng)的狀態(tài)估計才受到研究人員的廣泛關(guān)注。但是,配電網(wǎng)不同于輸電網(wǎng)絡(luò),有其自身的特點,如三相不對稱。因此,輸電系統(tǒng)的狀態(tài)估計并不適用于配電網(wǎng),有必要對配電系統(tǒng)的狀態(tài)估計進行有針對性的研究。

隨著配電自動化技術(shù)的發(fā)展,配電網(wǎng)的測量設(shè)備逐漸增多。在傳統(tǒng)的SCADA測量系統(tǒng)的基礎(chǔ)上,PMU也被應(yīng)用于配電網(wǎng),且數(shù)據(jù)精度越來越高。文獻提出了一種基于高精度PMU測量數(shù)據(jù)的配電網(wǎng)系統(tǒng)狀態(tài)估計方法,但文章并沒有具體說明該方法構(gòu)建的細節(jié)。文獻重點介紹了高精度PMU數(shù)據(jù)對狀態(tài)估計的作用,分析了極坐標系和直角坐標系下狀態(tài)估計的優(yōu)缺點,結(jié)果表明,PMU數(shù)據(jù)提高了配電網(wǎng)狀態(tài)估計的準確性。一般來說,最好選擇直角坐標系進行求解。文獻認為,未來配電網(wǎng)中會有PMU測量系統(tǒng),利用該高精度系統(tǒng)數(shù)據(jù)優(yōu)化方案后,可使狀態(tài)變量的誤差變得更小,從而達到提高估計精度的目的。然而,這樣在配電網(wǎng)中就會存在兩種不同體系的數(shù)據(jù)。一般情況下,SCADA數(shù)據(jù)精度不夠,沒有時間標記,數(shù)據(jù)刷新頻率低;PMU數(shù)據(jù)精度高,而且數(shù)據(jù)刷新頻率也較高,但配電網(wǎng)安裝數(shù)量較少。如果不進行處理,配電網(wǎng)狀態(tài)估計的效果將大大降低,但目前這方面的研究還相對較少。

文獻考慮了不同測量設(shè)備傳輸過程中時間斷面不一致的問題,因此使用時延誤差來補償由通信時延引起的誤差,解決了由時間斷面不一致引起的問題,最終也提高了狀態(tài)估計的精度。文獻中采用曲線擬合的方法彌補了測量系統(tǒng)數(shù)據(jù)刷新頻率低的問題,但數(shù)據(jù)精度有待提高。文獻主要考慮了PMU數(shù)據(jù)對狀態(tài)估計精度的影響,但沒有提到不同系統(tǒng)之間的數(shù)據(jù)差異。文獻考慮了PMU數(shù)據(jù)和SCADA數(shù)據(jù)的融合,采用了混合狀態(tài)估計算法,但對于時間斷面不一致的問題,沒有提出有效的解決方案。

基于上述研究,本文首先分析了SCADA和PMU數(shù)據(jù)的不同特點;然后根據(jù)它們之間的具體差異,從數(shù)據(jù)精度、時間斷面、數(shù)據(jù)刷新頻率三個方面給出了相應(yīng)的解決方案;最后,基于配電網(wǎng)三相線路模型,主要考慮數(shù)據(jù)融合的問題,采用支路電流法估計配電網(wǎng)狀態(tài)。

1SCADA數(shù)據(jù)與μPMU數(shù)據(jù)特性分析

在這里說明一下,在配電網(wǎng)中所配置的PMU一般被稱為μPMU,基本原理與PMU相同,所以后續(xù)本文將以μPMU進行敘述。下面將對SCADA數(shù)據(jù)與μPMU數(shù)據(jù)的不同特性進行分析。

SCADA數(shù)據(jù)主要包括三相電壓幅值、三相電流幅值與三相功率數(shù)據(jù),上傳數(shù)據(jù)的頻率在秒級水平,數(shù)據(jù)精度較高,但是沒有時間標記。μPMU數(shù)據(jù)主要包括三相電壓與電流相量數(shù)據(jù),數(shù)據(jù)精度比SCADA數(shù)據(jù)高,上傳數(shù)據(jù)的頻率在毫秒級水平,且有時間標記。由此可以看出,兩種量測數(shù)據(jù)之間存在很大的不同,在進行狀態(tài)估計時,需要對這些數(shù)據(jù)進行相應(yīng)的處理,從而更好地適應(yīng)配電網(wǎng)狀態(tài)估計的需要。

2兩種系統(tǒng)數(shù)據(jù)融合分析

2.1數(shù)據(jù)精度融合方法分析

眾所周知,SCADA系統(tǒng)數(shù)據(jù)的準確性要低于uPMU系統(tǒng)的數(shù)據(jù),因此在混合有兩種不同體系數(shù)據(jù)的配電網(wǎng)系統(tǒng)中進行狀態(tài)估計時,"權(quán)重系數(shù)法"是使用最廣泛的方法,即根據(jù)不同系統(tǒng)的數(shù)據(jù)分布誤差,將誤差方差的倒數(shù)作為該系統(tǒng)數(shù)據(jù)的權(quán)重,在此不再贅述[13]。2.2時間斷面數(shù)據(jù)融合方法分析

在進行某一時刻的系統(tǒng)狀態(tài)估計時,需要輸入該時刻的量測數(shù)據(jù),包括SCADA系統(tǒng)的測量數(shù)據(jù)和uPMU系統(tǒng)的測量數(shù)據(jù)。但前者的測量數(shù)據(jù)沒有被打上時間戳,所以就無法獲得SCADA數(shù)據(jù)的準確時間,那么狀態(tài)估計結(jié)果的精度僅僅依靠帶有時標的uPMU系統(tǒng)數(shù)據(jù)將會大打折扣。

針對上述情況,本文將以毫秒級水平上傳數(shù)據(jù)的uPMU系統(tǒng)的實際上傳頻率為參考,假定為10個毫秒,即10mS上傳一次數(shù)據(jù)。通過分析,筆者認為在如此短的時間區(qū)間內(nèi),且電力系統(tǒng)處于正常運行狀態(tài)下,上傳的數(shù)據(jù)發(fā)生異變的概率非常低。

在計算機技術(shù)中存在一種緩沖區(qū)的概念,即在計算機中由于存在高速傳輸組件及低速傳輸組件,這兩種組件的數(shù)據(jù)傳輸速率不一致,所以計算機中往往會設(shè)置一個用于臨時存儲高速數(shù)據(jù)的空間,這就是所謂的緩沖區(qū)。

基于上述分析,考慮到要為SCADA測量數(shù)據(jù)打上時標,并且在同一時間斷面上要保證既有uPMU測量數(shù)據(jù),也有SCADA測量數(shù)據(jù)。據(jù)此,本文引入了所謂"時間緩沖區(qū)"的概念,來為SCADA數(shù)據(jù)打上時標。具體做法是,以10mS上傳一次數(shù)據(jù)的uPMU數(shù)據(jù)作為參考,將其數(shù)據(jù)上傳時刻作為起點,10mS為一個時間間隔,即緩沖區(qū)。在這個緩沖區(qū)內(nèi)出現(xiàn)SCADA上傳數(shù)據(jù),就將其打上uPMU數(shù)據(jù)的時標,同時也保證了兩者的數(shù)據(jù)在一個時間斷面上。

如圖1所示,SCADA數(shù)據(jù)在uPMU數(shù)據(jù)所設(shè)置的10~20mS的緩沖區(qū)間內(nèi)出現(xiàn),根據(jù)前述分析,在緩沖區(qū)內(nèi)可以認為數(shù)據(jù)沒有變化。那么,在uPMU上傳時刻的SCADA數(shù)據(jù)與緩沖區(qū)真實上傳的SCADA數(shù)據(jù)基本一致,所以認為上傳的SCADA數(shù)據(jù)上傳時間在10mS處。

2.3數(shù)據(jù)刷新頻率融合方法分析

考慮到兩種系統(tǒng)的數(shù)據(jù)上傳頻率存在差異,上傳頻率為秒級別的SCADA數(shù)據(jù)和上傳頻率為毫秒級別的uPMU數(shù)據(jù),在一個時間段內(nèi),可以明顯看出兩者上傳的數(shù)據(jù)在數(shù)量上的差異。即在SCADA數(shù)據(jù)兩次上傳的時間區(qū)間內(nèi),uPMU數(shù)據(jù)已經(jīng)大量上傳到系統(tǒng)內(nèi)。但單靠這些數(shù)據(jù)又無法進行狀態(tài)估計,這就造成了巨大的數(shù)據(jù)浪費,致使系統(tǒng)調(diào)度人員不能更精準地掌握系統(tǒng)狀態(tài)信息。

如圖2所示,2S上傳速率的SCADA系統(tǒng)數(shù)據(jù)與10mS上傳速率的uPMU數(shù)據(jù),存在巨大的數(shù)量差異。

基于上述分析,電力系統(tǒng)運行在正常工況下,且負荷也處于穩(wěn)定變化的情況下,如相關(guān)負荷數(shù)據(jù)處在秒級別的時間區(qū)間內(nèi),在此條件下,本文認為數(shù)據(jù)特性應(yīng)當是穩(wěn)定且線性變化的,比如在2S的時間間隔內(nèi)。所以,可以利用線性變化規(guī)律來處理數(shù)據(jù)上傳頻率不一致的問題。

本文分析認為目前解決線性問題的主要方法有拉格朗日低次線性插值算法,簡稱插值方法,在此將其應(yīng)用于狀態(tài)估計數(shù)據(jù)頻率融合中。該插值方法主要對數(shù)據(jù)進行擬合,以獲取數(shù)據(jù)的變化規(guī)律。通常做法是對數(shù)據(jù)進行分段線性擬合,即把數(shù)據(jù)點按某一規(guī)律劃分成一個個小區(qū)間,以區(qū)間為單位進行擬合,這樣會得到較高的擬合精度。

一般情況下,內(nèi)插方法和外插方法是該算法的兩個主要方向,但這兩個方向的應(yīng)用場景有所不同。對區(qū)間外部數(shù)據(jù)進行分析擬合一般用外插算法,對區(qū)間內(nèi)部數(shù)據(jù)進行分析擬合一般用內(nèi)插算法。本文將根據(jù)這些特點,綜合利用這兩種方法,分析改善狀態(tài)估計效果的方法。

2.3.1頻率融合的內(nèi)插方法

如圖3所示,為了獲取較好的插值效果,當插值區(qū)間T2變?yōu)椴逯祬^(qū)間T1時,可以看到X1明顯比X2更加靠近X。因此,較小的插值區(qū)間帶來的是更好的擬合效果。

在本文實際分析中,2S是SCADA數(shù)據(jù)的最小上傳速率,那么就將SCADA數(shù)據(jù)的插值區(qū)間設(shè)置為2S。具體的SCADA數(shù)據(jù)插值公式如式(1)所示:

式中:[為相序號:TinSert為目標插值時間點:Tzone1為插值區(qū)間的首端時間點:Tzone2為插值區(qū)間的末端時間點,且Tzone1<TinSert<Tzone2:M為在上述相關(guān)腳標下的值。

2.3.2頻率融合的外插方法

通過分析發(fā)現(xiàn),對當前時間斷面或者未來時間斷面進行狀態(tài)估計,內(nèi)插法可能無法彌補前述時間斷面缺失的SCADA數(shù)據(jù),狀態(tài)估計也將無法有效運行。針對此種情況,本文利用外插法進行分析計算,方法如圖4所示,通過插值區(qū)間T來獲取未來某一時刻的X值近似的X1值。

基于此,利用外插法來補足該場景下所缺少的SCADA測量數(shù)據(jù),進而解決刷新頻率融合問題。具體的SCADA數(shù)據(jù)插值公式如式(2)所示:

式中:TinSertzone1為插值區(qū)間的首端時間點:TinSertzone2為插值區(qū)間的末端時間點,且TinSertzone1<TinSertzone2<TinSert:M為在上述相關(guān)腳標下的值。

3數(shù)據(jù)融合下的配電網(wǎng)狀態(tài)估計分析

加權(quán)最小二乘法是本文狀態(tài)估計主要方法,狀態(tài)變量選用支路電流幅值與相角,從而利用支路電流法構(gòu)建狀態(tài)方程,并進行狀態(tài)估計求解計算。

進行配網(wǎng)狀態(tài)估計,需要計及三相不對稱?;诖?支路阻抗矩陣如式(3)所示:

式中:Zaa、Zbb、Zcc為線路自阻抗:Zab=Zba,Zca=Zac,Zbc=Zcb為線路互阻抗。

此外,為了加快狀態(tài)估計速度,本文簡化了配網(wǎng)三相不對稱模型,即不考慮互阻抗對配網(wǎng)線路的影響,只考慮配網(wǎng)三相自阻抗。基于此,得到簡化后的配網(wǎng)支路阻抗矩陣如式(4)所示:

綜合分析,建立數(shù)據(jù)融合下的配電網(wǎng)狀態(tài)估計方法,其基本流程如下:

步驟1,從SCADA系統(tǒng)與uPMU系統(tǒng)讀取數(shù)據(jù),并為SCADA數(shù)據(jù)添加時標、統(tǒng)一時間斷面:

步驟2,若SCADA系統(tǒng)未上傳數(shù)據(jù),則利用插值分析方法填補數(shù)據(jù):

步驟3,初始化狀態(tài)估計的初值,整理相關(guān)網(wǎng)絡(luò)參數(shù)數(shù)據(jù),為狀態(tài)估計做準備:

步驟4,利用加權(quán)最小二乘法求解狀態(tài)變量的迭代值:

步驟5,利用狀態(tài)變量迭代值更新狀態(tài)量:

步驟6,判斷狀態(tài)變量的迭代值是否滿足收斂要求,即迭代值是否小于收斂值且迭代次數(shù)l是否小于等于最大迭代次數(shù)maxnum,若滿足則輸出狀態(tài)量,若不滿足則繼續(xù)步驟4,或者得出狀態(tài)估計不收斂的結(jié)果。

4算例分析

綜上所述,本文利用IEEE33節(jié)點系統(tǒng)平臺進行仿真算例研究。詳細步驟如下:利用潮流計算方法對仿真系統(tǒng)進行計算,獲取50S時間內(nèi)的相關(guān)潮流結(jié)果??紤]到現(xiàn)實條件,假設(shè)uPMU上傳頻率為1S(實際為毫秒級),SCADA數(shù)據(jù)上傳頻率為10S(實際為2S)。隨后,為驗證本文插值方法的有效性,將某一節(jié)點設(shè)置為SCADA系統(tǒng)的測量裝置,并將該點50S潮流結(jié)果作為其真實值,最后以10S為一個時間區(qū)間進行仿真插值計算,并分別以外插法和內(nèi)插法進行驗證,得到的結(jié)果如下。

4.1內(nèi)插法仿真分析

利用內(nèi)插法進行插值求解,獲取仿真結(jié)果,即全量測值與插值仿真之間的效果。在此對仿真節(jié)點的A相有功負荷進行了分析,分析結(jié)果如圖5所示。

4.2外插法仿真分析

通過外插法同樣進行了上述仿真分析,同樣對相關(guān)節(jié)點A相有功負荷進行分析,獲取的仿真結(jié)果如圖6所示。

4.3狀態(tài)估計仿真分析

從上述結(jié)果可以看出,內(nèi)插法的精度要高于外插法,所以本文利用內(nèi)插法所得數(shù)據(jù)進行狀態(tài)估計計算。

在IEEE33節(jié)點系統(tǒng)中,節(jié)點4、6、8、12、17、19、23配置uPMU量測系統(tǒng),其余節(jié)點配置SCADA量測系統(tǒng)。其中uPMU的測量量添加標準差為0.1%的正態(tài)分布誤差,SCADA的測量量添加標準差為1%的正態(tài)分布誤差。結(jié)果如圖7所示,可見狀態(tài)估計具有較高精度。

5結(jié)語

通過對上述兩種插值效果進行分析可以發(fā)現(xiàn),內(nèi)插法要明顯優(yōu)于外插法。此外,通過量化計算可以得知,內(nèi)插法計算得到的有功負荷的平均誤差為0.5%,而利用外插法計算得到的有功負荷的平均誤差為2%。據(jù)此分析,外插法在精度方面要劣于內(nèi)插法。本文通過研究認為,這主要是由于內(nèi)插法分析對象是在已知的趨勢基礎(chǔ)上進行的,而外插法則基于數(shù)據(jù)的未知趨勢來進行分析計算。但正因如此,內(nèi)插法和外插法各有優(yōu)劣,從而本文認為可以將它們結(jié)合起來進行運用,即在進行狀態(tài)估計時,首先利用外插法進行當前或未來時間斷面的計算,然后利用高精度的內(nèi)插法對外插法的結(jié)果進行修正、循環(huán)計算,就可以提高相關(guān)數(shù)據(jù)的精度,而且狀態(tài)估計值也可以得到計算與改善。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉