Bourns? SRP3220A 系列符合車規(guī)級 AEC-Q200 標(biāo)準(zhǔn),其設(shè)計特點(diǎn)有助于降低 EMI,進(jìn)而提升汽車應(yīng)用中的性能與可靠性
在LED照明技術(shù)向高能效、低電磁干擾(EMI)方向演進(jìn)的過程中,電流模式控制與動態(tài)負(fù)載調(diào)整算法的協(xié)同優(yōu)化成為突破技術(shù)瓶頸的核心路徑。本文將從控制架構(gòu)創(chuàng)新、動態(tài)負(fù)載補(bǔ)償機(jī)制及EMI抑制策略三個維度,揭示新一代LED驅(qū)動器的技術(shù)突破。
以太網(wǎng)供電(PoE)技術(shù)快速發(fā)展,電磁兼容性(EMC)已成為保障設(shè)備穩(wěn)定運(yùn)行的核心挑戰(zhàn)。PoE電路通過單根網(wǎng)線同時傳輸電力與數(shù)據(jù),高頻開關(guān)電源、高速信號傳輸與復(fù)雜電磁環(huán)境的疊加,導(dǎo)致電磁干擾(EMI)問題尤為突出。本文結(jié)合IEEE 802.3af/at/bt標(biāo)準(zhǔn)及實(shí)際工程案例,系統(tǒng)解析PoE電路中EMI濾波與屏蔽設(shè)計的關(guān)鍵策略。
AC-DC電源模塊的電磁干擾(EMI)問題始終是硬件工程師面臨的挑戰(zhàn),其核心矛盾源于高頻開關(guān)動作與電磁兼容要求的沖突。在開關(guān)電源中,差模噪聲與共模噪聲如同硬幣的兩面,既存在本質(zhì)差異又相互關(guān)聯(lián)。差模噪聲的產(chǎn)生與功率級電流路徑直接相關(guān),當(dāng)主開關(guān)管導(dǎo)通時,輸入電容快速充放電形成脈沖電流,這種電流在正負(fù)導(dǎo)線間流動形成差模干擾。而共模噪聲則源于電壓突變引發(fā)的寄生電容耦合,例如變壓器繞組間或開關(guān)管與散熱片間的分布電容,使高頻噪聲通過地線回路形成共模電壓。兩種噪聲的傳播路徑截然不同:差模噪聲沿電源線向外輻射,共模噪聲則通過空間耦合或接地系統(tǒng)傳播。
EMI測試整改是在電子產(chǎn)品研發(fā)和生產(chǎn)過程中,針對電磁干擾問題進(jìn)行的專項(xiàng)改進(jìn)工作。通過整改,可以有效降低產(chǎn)品在工作時產(chǎn)生的電磁輻射,減少對周邊設(shè)備的干擾,提高產(chǎn)品的電磁兼容性。同時,EMI測試整改也是產(chǎn)品通過國內(nèi)外電磁兼容性認(rèn)證的必要條件,對于產(chǎn)品進(jìn)入市場具有重要意義。
EMI屏蔽?是指采取措施減少或防止電磁干擾(EMI)的傳播。電磁干擾是指由電子設(shè)備或系統(tǒng)產(chǎn)生的電磁能量,這些能量可能會影響其他設(shè)備的正常工作。EMI屏蔽的目的是保護(hù)敏感設(shè)備免受外部電磁干擾,同時也防止設(shè)備本身發(fā)出的電磁干擾影響到其他設(shè)備?。
EMI 濾波器,這一看似簡單的電子元件,實(shí)則蘊(yùn)含著高科技的智慧。它如同電子世界的 “清道夫”,主要應(yīng)用于電源線和信號線上。其工作原理基于電感、電容等元件的巧妙組合,宛如一場精密的交響樂演奏。電感對高頻信號呈現(xiàn)出高阻抗,如同堅固的路障,阻礙噪聲前行;電容則對高頻信號表現(xiàn)出低阻抗,將噪聲巧妙地 “短路” 到地或另一條線,從而實(shí)現(xiàn)對高頻噪聲的精準(zhǔn)捕捉與濾除。通過這種方式,EMI 濾波器為電子設(shè)備構(gòu)建起一道堅不可摧的電磁屏障,確保設(shè)備內(nèi)部電路免受干擾,穩(wěn)定高效地運(yùn)行,同時防止設(shè)備成為電磁污染源,維護(hù)周圍電磁環(huán)境的和諧與平衡。
在開關(guān)電源設(shè)計中,電磁干擾(EMI)前置濾波是確保設(shè)備通過輻射與傳導(dǎo)發(fā)射測試的關(guān)鍵環(huán)節(jié)。XY電容作為濾波電路的核心元件,其容值選擇直接影響高頻噪聲的衰減效果,但受限于安規(guī)標(biāo)準(zhǔn)中規(guī)定的爬電距離與電氣間隙,大容值電容的引入往往導(dǎo)致PCB布局困難甚至違反安全規(guī)范。這一矛盾在緊湊型電源設(shè)計(如適配器、充電器)中尤為突出,需通過材料創(chuàng)新、結(jié)構(gòu)優(yōu)化與電路設(shè)計的協(xié)同方案加以化解。
在電動汽車直流快充系統(tǒng)中,充電功率突破50kW級,碳化硅(SiC)與氮化鎵(GaN)器件的普及使開關(guān)頻率攀升至MHz級,導(dǎo)致傳導(dǎo)與輻射干擾強(qiáng)度較交流充電提升3-5倍。直流充電樁的EMI抑制需兼顧高頻噪聲抑制與高壓安全防護(hù),其中X電容與Y電容的直流耐壓等級匹配是核心設(shè)計準(zhǔn)則。
在電容降壓電路中,溫度管理和熱效應(yīng)控制是必不可少的。高溫可能導(dǎo)致電容器性能不穩(wěn)定,甚至損壞其他電子元件。因此,采取適當(dāng)?shù)纳岽胧?,并合理設(shè)計電路布局以提高散熱效果至關(guān)重要。
EMI可以通過各種方式傳播,如電磁波、導(dǎo)線和電源線等。在電子設(shè)備密集的現(xiàn)代社會,EMI已經(jīng)成為一個不可忽視的問題。
由于快速開關(guān),電壓和電流波形的上升沿和下降沿變化更快。急劇的變化會在高頻下產(chǎn)生大量能量,成為開關(guān)模式電源供應(yīng)中 EMI 的主要來源。這種高頻能量會在電源供應(yīng)的諧振腔內(nèi)產(chǎn)生振鈴。
電磁兼容性(EMC)及其相關(guān)的電磁干擾(EMI)一直是系統(tǒng)設(shè)計工程師需要重點(diǎn)關(guān)注的問題。在當(dāng)今電路板設(shè)計和元器件封裝尺寸不斷縮小,同時OEM對系統(tǒng)速度要求日益提升的背景下,這兩個問題對PCB布局和設(shè)計工程師來說更具挑戰(zhàn)性。
電磁干擾(Electromagnetic Interference,簡稱EMI),是由電磁波與電子元件相互作用引發(fā)的一種干擾現(xiàn)象。這種干擾現(xiàn)象主要分為兩種類型:傳導(dǎo)干擾和輻射干擾。傳導(dǎo)干擾是指,通過導(dǎo)電介質(zhì),一個電網(wǎng)絡(luò)上的信號被耦合(即干擾)到另一個電網(wǎng)絡(luò)中。而輻射干擾則是指,干擾源通過空間傳播,將其信號耦合(同樣產(chǎn)生干擾)到另一個電網(wǎng)絡(luò)中。
在現(xiàn)代電子設(shè)備中,開關(guān)電源以其高效、體積小的優(yōu)點(diǎn)被廣泛應(yīng)用。然而,開關(guān)電源在工作過程中會產(chǎn)生電磁干擾(EMI),這不僅會影響設(shè)備自身的性能,還可能對周圍的電子設(shè)備造成干擾。因此,深入分析開關(guān)電源EMI的主要來源,并提出有效的減少措施,對于提升設(shè)備的電磁兼容性(EMC)具有重要意義。
在現(xiàn)代電子設(shè)備中,開關(guān)電源以其高效率、小體積和輕重量等特點(diǎn)成為不可或缺的組件。然而,在設(shè)計開關(guān)電源時,開關(guān)頻率的選擇對電磁干擾(EMI)和效率具有顯著影響。本文將深入探討這兩者之間的關(guān)系,并提供相關(guān)的計算和分析方法,最后附上一段示例代碼,以幫助讀者更好地理解這一復(fù)雜問題。
在電子產(chǎn)品開發(fā)和生產(chǎn)過程中,電磁兼容性(EMC)測試是確保產(chǎn)品符合相關(guān)標(biāo)準(zhǔn)、避免電磁干擾(EMI)和電磁敏感度(EMS)問題的重要環(huán)節(jié)。然而,在實(shí)際測試中,產(chǎn)品可能會出現(xiàn)各種故障,如復(fù)位異常,這往往是由于電磁干擾導(dǎo)致的。本文將探討如何通過固件手段輔助定位EMC測試中的復(fù)位異常,并設(shè)計一種PWM輸出與ADC采樣的相位監(jiān)控機(jī)制,以及如何通過頻譜分析鎖定干擾源。
任何電子產(chǎn)品都必須通過適用的電磁兼容性 (EMC) 測試,然后才能投放到目標(biāo)市場。認(rèn)識到預(yù)防勝于治療,從開發(fā)的早期階段就進(jìn)行合規(guī)性設(shè)計通常是理想的選擇??梢圆扇「鞣N方法,從應(yīng)用已知的最佳實(shí)踐到使用 EMC 模擬器(如果有),以及在內(nèi)部或與專業(yè)合作伙伴一起進(jìn)行 EMC 預(yù)測試。
該研究介紹了利用綜合生成化學(xué)引擎Chemistry42設(shè)計和優(yōu)化新型腸道限制性PHD抑制劑ISM5411的研發(fā)過程; 從項(xiàng)目啟動到提名臨床前候選藥物僅耗時12個月,期間合成和篩選了約115個分子; 臨床前研究表明ISM5411具有腸道限制性和PHD特異性,從而降低了...