電池、超級電容器和燃料電池需要仔細監(jiān)控,以延長續(xù)航里程、延長壽命并確保儲能系統(tǒng)的安全,例如電動和混合動力汽車。電池在汽車中的使用正在沿著一系列應用發(fā)展。微型混合動力汽車使用傳統(tǒng)的 12V 鉛酸電池,并具有交流發(fā)電機-電機單元,當您停止車輛時,可以讓發(fā)動機停止。當您踩下油門踏板時,發(fā)動機平穩(wěn)啟動,然后按常規(guī)運行。
電子產品上可以采用許多傳輸視頻數(shù)據(jù)的端口,如顯示端口、CVBS、HDMI等,其中HDMI接口應用最為廣泛。筆記本電腦、電視機和機頂盒(STB)上的HDMI接口都可以觀察到。
近年來,在許多市場和應用中出現(xiàn)了使用效率更高的無刷直流 (BLDC) 電機的趨勢。許多應用正在使用(或可能使用)這些電機來代替交流感應電機。
這有點像灰姑娘或丑小鴨的童話故事:多年來,各種類型、大小和速度的處理器都是一般媒體關注的迷人主題以及主要的研發(fā)投資。與此同時,功率器件——主要是基于硅的 MOSFET 和 IGBT——顯然被低估了,并且作為本應乏味的功率利基市場的一部分在背景中萎靡不振。
所以電動汽車需要更多的電力,因此功率水平最高可達傳統(tǒng)汽車的 20 倍。所以內燃機、ICE……我的意思是,對于工程師來說,對于試圖優(yōu)化電力網絡的電力工程師來說,這種增長是一個重大挑戰(zhàn)。還有基礎設施、充電站、電網。如您所知,汽車現(xiàn)在更加電動化,我們可以這么說。所以我們不需要機械工程師,我的意思是。而在這種情況下,問題也是:我們如何改造舊的機械工程師?換句話說,如何從與內燃機汽車相關的職業(yè)轉向電動汽車。我們確實需要在這些新興領域(電動汽車)具有特定資格的新專業(yè)人員。
對于 FTEX,目前的挑戰(zhàn)是開始制造。所以我們已經開始預制造了。你知道,在路上建立一個原型需要 20% 的努力,而 80% 的工作真的就像是讓這個原型對每個人都具有良好的功能,并具有良好的故障率和良好的良率。當然,供應鏈現(xiàn)在是一個我們必須解決的大問題。
從家用電器、筆記本電腦和數(shù)據(jù)中心到電動汽車,電源轉換系統(tǒng)是每個電子設備的核心。在這個與 Wise-Integration 首席執(zhí)行官 Thierry Bouchet 的播客中,我們將發(fā)現(xiàn) GaN 在電源轉換解決方案中的優(yōu)勢。Wise-Integration 是 CEA-LETI 的衍生公司,是一家從臺積電開發(fā) GaN 集成解決方案的公司,以使電源小型化并提高能源效率。
下一代功率器件必須采用滿足性能、效率和價值要求的技術。正如您所提到的,GaN 已成為主要組件。然而,在評估 GaN 解決方案時,出現(xiàn)了一個問題,即什么是該應用的最佳解決方案。例如,GaN-on-silicon 和 GaN-on-silicon-carbide 或 GaN-on-GaN。在這種情況下,我們談論的是垂直 GaN。GaN的默認襯底是硅或-碳化硅,對于碳化硅,在射頻領域有很多應用,如你所知。在 GaN-on-GaN 中,我發(fā)現(xiàn)與其他產品相比,碳化硅的導熱性比 GaN 高得多。你怎么看?技術在這方面的挑戰(zhàn)和方向是什么?
電源完整性是一個復雜的領域,對于非常高性能的設計,電磁 (EM) 仿真成為一種重要工具,但由于成本原因,大多數(shù)制造商無法使用。像本系列中的往常一樣,我們不會討論復雜的理論。相反,讓我們討論一下制造商應該了解的有關為 ADC 供電的基礎知識。
長期以來,將功耗降至最低一直是許多設計的主要目標。原因從顯而易見的電池供電電路和綠色系統(tǒng),到可能不那么明顯的電源最小化和成本降低。大多數(shù)設計人員只是尋找具有最低功耗規(guī)格的產品。雖然較低的時鐘頻率通常意味著較低的功耗,但使用突發(fā)模式操作可以進一步降低功耗。本文介紹了使用突發(fā)模式操作來最小化 ADC(模數(shù)轉換器)的平均功耗。
ADC 將現(xiàn)實世界的模擬信號(如聲音、溫度、壓力和光)轉換為可在數(shù)字域中處理的數(shù)字信號。 模擬設計工程師喜歡說“世界是模擬的”,但今天大多數(shù)信號處理都是由數(shù)字計算機完成的——模擬計算機的時代早已結束。本文概述了 ADC,并就如何成功應用它們提出了建議。
校準值可以通過讀取已知參考值然后找出要使用的校正因子(二進制因數(shù))來計算。對于給出的示例,理想情況和最壞情況 ADC 值之間的差異永遠不會超過 1.2%,因此從原始值的二分之一或四分之一開始是沒有意義的。測試和使用的唯一值是 1/128、1/256 和 1/512。你想從接近你期望看到的價值開始。
許多微控制器都包含片上 ADC。典型器件包括 Microchip PIC167C7xx 系列和 Atmel AT90S4434。大多數(shù)微控制器 ADC 都是逐次逼近的,因為這可以在速度和微控制器芯片上的空間成本之間進行最佳權衡。
ADC 比較,顯示了可用于 sigma-delta、逐次逼近和閃存轉換器的分辨率范圍。還顯示了每種類型的最大轉換速度。如我們所見,可用的 sigma-delta ADC 的速度達到了逐次逼近型 ADC 的范圍,但甚至不如最慢的閃存 ADC 快。表格沒有顯示的是速度和準確性之間的權衡。例如,雖然我們可以獲得范圍從 8 位到 16 位的逐次逼近型 ADC,但我們不會發(fā)現(xiàn) 16 位版本在給定的器件系列中是最快的。最快的閃存 ADC 不會是 12 位部分,而是 6 位或 8 位部分。
將模擬輸入帶入微處理器的常用方法是使用模數(shù)轉換器 (ADC)。以下是選擇此類零件并對其進行校準以滿足您的需求的一些提示。