低功耗嵌入式系統(tǒng)的設(shè)計(jì)考量:一般設(shè)計(jì)考量
掃描二維碼
隨時(shí)隨地手機(jī)看文章
低功耗電池供電嵌入式應(yīng)用的設(shè)計(jì)考量
1. 硬件考量:
a. 電池類型:
在嵌入式應(yīng)用中主要有以下類型的電池:
i. )標(biāo)準(zhǔn)堿性電池
iii. )可充電電池: 可充電堿性電池,鋰離子電池
iii. )鈕扣電池
對(duì)于各種廣泛低功耗嵌入式應(yīng)用而言,為系統(tǒng)充電不是合理的使用案例模型。這里無(wú)需為這些應(yīng)用使用可充電電池。我們來(lái)比較一下另外兩種在低功耗應(yīng)用中有用的電池以及在為設(shè)計(jì)選擇電池時(shí)需考慮的因素。
標(biāo)準(zhǔn)堿性電池:標(biāo)準(zhǔn)AA電池的典型容量大約為1500mAh,不僅可輕松提供數(shù)百mA的峰值電流,而且還能夠以50mA的恒定速率放盡電流。
堿性電池能為應(yīng)用提供高峰值電流,因此系統(tǒng)能夠在并列使用其全部專用外設(shè)(定時(shí)器與通信模塊等)的同時(shí),在其最高時(shí)鐘頻率下運(yùn)行,從而可在盡快完成各項(xiàng)任務(wù)后,快速進(jìn)入低功耗工作模式。
鈕扣電池:鈕扣電池具有極高的內(nèi)部電阻,因此不能承受高峰值電流。在應(yīng)用超過(guò)20mA的峰值電流時(shí),即便持續(xù)時(shí)間很短,其有效電壓也會(huì)大幅下降。因此對(duì)于使用鈕扣電池供電的設(shè)計(jì)而言,強(qiáng)烈建議設(shè)計(jì)使用能在2V或以下電壓下工作的組件。微控制器的掉電電壓應(yīng)低至能避免在鈕扣電池提供高峰值電流時(shí)系統(tǒng)出現(xiàn)意外復(fù)位的水平。
此外,我們還需要采取預(yù)防措施來(lái)降低系統(tǒng)所需的峰值電流。降低峰值電流的途徑包括:
● 降低CPU時(shí)鐘頻率
● 通過(guò)隨時(shí)分配負(fù)載,避免一次性啟用所有內(nèi)部模塊
● 在外部組件及內(nèi)部模塊未使用時(shí),減少對(duì)它們的供電
b. 設(shè)置正確的微控制器:
要讓低功耗應(yīng)用中的靜態(tài)功耗和動(dòng)態(tài)功耗保持最低,最重要的是選擇具有所需外設(shè)集的微控制器,其可在所需電源模式下工作。根據(jù)需要,系統(tǒng)設(shè)計(jì)人員可選擇合適的微控制器,該微控制器支持低功耗模式下其應(yīng)用所需的外設(shè)集。
以需要LCD較長(zhǎng)時(shí)間工作的應(yīng)用為例。通過(guò)選擇可在低功耗模式下運(yùn)行該LCD的微控制器,開發(fā)人員可最大限度降低功耗。這類微控制器的典型實(shí)例就是賽普拉斯的PSoC 4,其可讓LCD顯示器以僅3uA的流耗進(jìn)入深度睡眠模式。復(fù)雜應(yīng)用的情況類似,我們需要進(jìn)行利弊權(quán)衡,確定能以最低平均功耗完成每項(xiàng)任務(wù)的適當(dāng)微控制器。
c. 選擇合適的無(wú)源組件:
上拉電阻器和下拉電阻器是支持接口開關(guān)及I2C器件等的常用組件。有時(shí)在低功耗設(shè)計(jì)中,這些上拉及下拉電阻器消耗的電源比系統(tǒng)其它部分還大。要降低其功耗,需要使用更大的電阻值。這樣可降低流經(jīng)它們的電流量。但它同時(shí)會(huì)增大RC時(shí)間常數(shù),因此會(huì)降低系統(tǒng)對(duì)高頻率信號(hào)的響應(yīng)能力。
例如,為I2C線路使用高阻值上拉電阻器會(huì)降低I2C通信的速度,因?yàn)樵龃罅薎2C線路的壓擺率。因此這些電阻器值可決定影響最終設(shè)計(jì)的各種因素之間的權(quán)衡取舍。
同樣,在為設(shè)計(jì)選擇電容器時(shí),應(yīng)避免電解電容器,因?yàn)樗鼈兙哂袠O高的漏電流。薄膜電容器和陶瓷電容器能以合理的成本提供超低的漏電流,可考慮用于低功耗系統(tǒng)設(shè)計(jì)。
d. 審慎使用I/O:
避免在系統(tǒng)中隨機(jī)分配控制器I/O引腳。如果引腳隨機(jī)分布在不同端口,則需要對(duì)每個(gè)端口單獨(dú)處理,這樣會(huì)增加控制它們所需的寄存器寫入數(shù)。為解決這一問題,可以按最小端口數(shù)對(duì)輸入引腳和輸出引腳進(jìn)行分組,從而實(shí)現(xiàn)以最小的寄存器寫入數(shù)完成讀取與寫入。
在引腳用于驅(qū)動(dòng)LED和其它類似負(fù)載的地方,應(yīng)使用引腳的開漏驅(qū)動(dòng)模式,這些負(fù)載的一端固定在VDD或接地上。這種驅(qū)動(dòng)模式可降低通過(guò)I/O引腳的漏電流,因此可降低功耗。
e. 選擇正確的外設(shè):
在系統(tǒng)設(shè)計(jì)中應(yīng)使用支持低功耗模式、在工作模式下支持低功耗的外設(shè)組件,以降低設(shè)計(jì)的總體功耗。
f. 審慎使用系統(tǒng)時(shí)鐘:
定義系統(tǒng)時(shí)鐘的行為有助于降低系統(tǒng)功耗。遵循通用系統(tǒng)時(shí)鐘相關(guān)設(shè)計(jì)實(shí)踐可幫助在幾乎每個(gè)系統(tǒng)中實(shí)現(xiàn)低功耗。
● 在系統(tǒng)中使用低頻率時(shí)鐘降低動(dòng)態(tài)功耗。
● 在執(zhí)行計(jì)算密集型任務(wù)時(shí)提升系統(tǒng)時(shí)鐘,可通過(guò)縮短完成任務(wù)的時(shí)間,降低平均功耗。
● 優(yōu)先使用系統(tǒng)時(shí)鐘,而非外部時(shí)鐘。
● 在CPU等待通信傳輸完成時(shí),應(yīng)關(guān)閉CPU,只開啟通信模塊的時(shí)鐘。在完成該任務(wù)后,它可獲得一個(gè)中斷信號(hào),恢復(fù)代碼執(zhí)行。
g. 電流門控:
一般情況下,熱敏電阻等無(wú)源傳感器工作在分壓器模式下,因此一直都在消耗系統(tǒng)電流。為降低這種情況下的功耗,我們可以在通過(guò)采樣傳感器網(wǎng)絡(luò)獲得相關(guān)數(shù)據(jù)之前為其提供電源,并在數(shù)據(jù)采樣完成后切斷電源。這在傳感器需要定期讀取的情況下才有用。
但當(dāng)傳感器必須保持工作狀態(tài)才能檢測(cè)環(huán)境中的異?,F(xiàn)象時(shí),CPU可在整個(gè)傳感過(guò)程中保持低功耗模式。CPU一旦收到傳感器的中斷/數(shù)據(jù)信息,就會(huì)恢復(fù)工作模式。類似邏輯可用于讀取開關(guān)狀態(tài),以判斷它是處于開啟還是關(guān)閉狀態(tài)。