www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 數(shù)字電源
[導讀]本文通過一個開發(fā)實例詳細說明如何通過DSP的HPI接口與運行Linux操作系統(tǒng)的ARM架構處理器進行數(shù)據(jù)通信。給出接口部分的實際電路和ARM-Linux下驅動程序的開發(fā)過程。

    摘要:本文通過一個開發(fā)實例詳細說明如何通過DSP的HPI接口與運行Linux操作系統(tǒng)的ARM架構處理器進行數(shù)據(jù)通信。給出接口部分的實際電路和ARM-Linux下驅動程序的開發(fā)過程。

    關鍵詞:設備驅動程序 嵌入式Linux HPI ARM DSP

1 引言

基于ARM核心處理器的嵌入式系統(tǒng)以其自身資源豐富、功耗低、價格低廉、支持廠商眾多的緣故,越來越多地應用在各種需要復雜控制和通信功能的嵌入式系統(tǒng)中。

內核源碼開放的Linux與ARM體系處理器相結合,可以發(fā)揮Linux系統(tǒng)支持各種協(xié)議及存在多進程調度機制的優(yōu)點,從而使開發(fā)周期縮短,擴展性增強。作為數(shù)字處理專用電路,DSP的數(shù)字信號處理能力十分強大,但對諸如任務管理、通信、人機交互等功能的實現(xiàn)較為困難。

如果將這三者結合起來,即由DSP結合采樣電路采集并處理信號,由ARM處理器作為平臺,運行Linux操作系統(tǒng),將經(jīng)過DSP運算的結果發(fā)送給用戶程序進行進一步處理,然后提供給圖形化友好的人機交互環(huán)境完成數(shù)據(jù)分析和網(wǎng)絡傳輸?shù)裙δ?,就會最大限度的發(fā)揮三者所長。

2 系統(tǒng)結構

該系統(tǒng)硬件由二部分組成,其中一部分為若干塊DSP板,各自獨立承接數(shù)據(jù)采集和信號處理。另一部分為以ARM為核心處理器的CPU板。系統(tǒng)硬件框圖如圖1所示(僅接口部分)。

3 接口硬件部分設計

3.1 HPI接口簡介

HPI接口是TI公司新一代、高性能DSP上用以完成與主機或其他DSP之間數(shù)據(jù)交換的接口,這里主要介紹實際電路中使用的控制引腳和時序。

HCNTL0和HCNTL1為訪問控制選擇。用來確定主機(ARM)究竟對TMS320C6711中的哪一個HPI寄存器進行處理。具體功能如表1所列。

表1 HCNTL0和HCNTL1的功能

HCNTL0 HCNTL1

功    能

0 0 主機對HPI控制寄存器(HPIC)進行讀寫
0 1 主機對HPI地址寄存器(HPIA)進行讀寫
1 0 主機對HPI數(shù)據(jù)寄存器(HPID)地址自動增加模式(Auto increment mode)進行讀寫,對HPID讀寫后,地址寄存器(HPIA)自動增加一個字地址(4字節(jié)地址)
1 1 主機對HPI數(shù)據(jù)寄存器(HPID)地址固定模式(Fixed mode)進行讀寫。對HPID讀寫后,地址寄存器(HPIA)保持不變

HR/W:讀寫選擇控制。為“1”表示是從DSP中讀,反之則為寫。

HHWIL:半字節(jié)定義選擇,與HPIC寄存器中的HWOB位進行配合可以選擇當前傳輸?shù)氖歉甙胱诌€是低半字。低電平是第一個半字,高電平是第二個半字。

HCS:選通脈沖(Strobe),與HDS1、HDS2相互配合完成內部信號HSTROBE的生成。邏輯關系如圖2所示。

將HDS1、HDS2分別固定為高電平和低電平,這樣HCS就和HSTROBE完全一致。

HSTROBE讀時序如圖3所示。

3.2 接口電路

ARM處理器通過DSP的HPI接口與DSP進行連接的硬件原理如圖4所示(以單板DSP為例)。其中SN74LVTH16245為16位(二個8位)雙向三態(tài)總線收發(fā)器,主要起總線驅動和方向控制的作用同時也保證在不對HPI口進行操作時數(shù)據(jù)總線鎖閉。AT91RM9200為Atmel公司生產(chǎn)的ARM9為核心的處理器,其中引腳D0-D15為數(shù)據(jù)總線,A2-A8為地址總線的一部分,CS3為片選信號線,當ARM對總線地址范圍為0x40000 0000~0x4FFF FFFF的外部設備進行操作時,會在該引腳產(chǎn)生一個片選信號。同時該信號控制SN74LVTH16245的使能端,避免在讀寫其他地址時對HPI端口造成影響。TMS320C6711D是TI公司生產(chǎn)的DSP,每秒可以完成15億次浮點運算,數(shù)據(jù)處理功能十分強大。引腳D0-D15為數(shù)據(jù)總線。其余端口是HPI接口的控制引腳。

4 驅動程序設計

4.1 Linux驅動程序簡介

在Linux操作系統(tǒng)下有二種方式將驅動程序裝入操作系統(tǒng)內核:一種是直接將驅動程序編譯進內核,另外一種是將驅動程序構建為驅動程序模塊后采用insmod/rmmod命令將模塊加載內核中。由于是在嵌入式系統(tǒng)中進行程序開,所以筆者選用了模塊加載方式。這樣,在整個程序的調試過程中不必因為修改某處而反復編譯整個內核,只需編譯驅動程序模塊并重新加載。

本例中Linux下的驅動程序主要用來完成文件(Linux把外部設備也認為是文件)的打開、關閉、讀、寫等操作。也就是對如下結合的填充。

Static struct file_operations fops=

{open:hpi_open,

release:hpi_release,

mmap:hpi_mmap,

};

其中,open和release完成設備的打開和關閉。mmap為內存地址映射操作。因為采用的是模塊加載方式,所以還應該加上int init_module(void)和void cleanup_module(void)函數(shù),以完成模塊的注冊和卸載。

4.2 驅動程序中映射的實現(xiàn)

由于驅動程序的內存空間是在內核空間中,因此首先應解決內核空間與用戶空間的交互問題。這里采用最直接的方式將內核空間和用戶空間聯(lián)系起來實現(xiàn)映射,即利用remap_page_range內核函數(shù)(通過mmap系統(tǒng)調用實現(xiàn))。

函數(shù)原形如下:

int remap_page_range(unsigned long virt_add,unsigned long phys_add,unsigned long size,pgprot_tprot);

函數(shù)的功能是構造用于映射一段物理地址的新頁表。函數(shù)返回的值通常是0或者一個負的錯誤碼。函數(shù)參數(shù)的確切含義如下:

virt_add:重映射起始處的用戶虛擬地址。phys_add:虛擬地址所映射的物理地址。Size:被重映射的區(qū)域的大小。Prot:新VMA(virtual memory area)的“保證(protection)”標志。具體定義在源泉文件/include/linux/mm.h中。系統(tǒng)調用MMAP的程序代碼如下:

static int hpi_mmap(struct file *f,struct vm_area_struct *vma)

vma->vm_flags|=VM_WRITE;

if(remap_page_range(vma->vm_start,((0x40000000)),

vma->vm_end-vma->vm_start,(_pgprot (pgprot_val(pgprot_noncached(vma->vm_page_prot))|

(L_PTE_WRITE|L_PTE_DIRTY))))) //進行映射

{return -1;} //映射失敗

return 0;

}

結合硬件結構可對函數(shù)remap_page_range()分別填充如下參數(shù):

remap_page_range(vma->vm_start,((0x40000000)),vma->vm_end-vma->vm_start,(__pgprot(pgprot_val(pgprot_noncached(vma->vm_page_prot)) |(L_PTE_WRITE|L_PTE_DIRTY)))))

其中vma為結合vm_area_struct,在<linux/mm.h>中定義。

應用中需要注意以下字段:unsigned long vm_flags應該使用標志VM_RESERVED,以避免內存管理系統(tǒng)將該VMA交換出去。因為要對DSP寫入數(shù)據(jù),所以必須使用標志VM_WRITE說明對這一段VMA是允許寫入的。pgport_t vm_page_prot指明了對VMA的保護權限。由于利用CS3對DSP的HPI接口進行控制,所以應用pgprot_noncached禁止高速緩沖。

    通過mmap的構建就能夠將內核空間的數(shù)據(jù)映射到用戶空間去,也就是說可以在用戶空間內直接對地址為0x4000_0000的內存空間進行操作,而該段空間正是DSP的HPI接口所對應的地址。

在實際應用中,應對CS3的低電平脈寬加以控制,方法是在初始化模塊時對ARM的控制寄存器CSR[3]進行調節(jié)。該寄存器的D0-D6確定了ARM外部總線的時鐘延時周期,D7為等待周期的使能,D12-D14為數(shù)據(jù)寬度。具體定義如下:AT91_SYS->EBI_SMC2_CSR[3]=0x00003083,即使用16bit數(shù)據(jù)寬度,等待周期為3個。當ARM主頻為180MHz時,CS3低電平脈寬約為150ns。

4.3 驅動程序的系統(tǒng)調用接口

為對處于總線地址0x4000_0000的DSP板進行操作,首先應用open打開設備,該設備可以通過mknod建立(本例建立的是/dev/hpi)。然后mmap完成映射。

Int dev_hpi_open(str_HPI *ss)

{size_t length=1024;

int i;

if((*ss).hpi_number==0)

{

(*ss).hpi_fd=open("/dev/hpi",O_RDWR);

}

if((*ss).hpi_fd==-1)return -1;

(*ss).hpi_mmap_start =mmap(NULL,length,PROT_READ|PROT_WRITE,MAP_SHARED,((*ss).hpi_fd),0); //獲得映射區(qū)內存的起始地址

return 0;

} //dev_hpi_open

mmap的作用是將文件內容映射到內存中。函數(shù)的原形及各參數(shù)定義如下:

*mmap(void *start,size_length,int prot,int flags,intfd,off_t offset)

start指向欲對應的內存地址,size-length的含義是要映射的量;prot代表映射區(qū)域的保護方式;flag會影響映射區(qū)域的各種特性;fd為文件描述符;offtoffset代表文件的偏移量,通常設置為零。

示例程序中的結構體變量ss用來總知各種變量。通過mmap可以獲得映射后的內存地址,用(*ss).hpi_mmap_start表示。

一旦獲得了這個起始地址,就能對0x4000_0000起始的總線地址進行操作,因為映射已經(jīng)完成,對(*ss).hpi_mmap_start的操作就是對0x4000_0000起始的總線地址進行操作,而DSP板HPI接口的控制線正是在這個位置。這樣就實現(xiàn)了物理地址和用戶空間的轉換。

4.4 用戶程序接口部分

下面以HPI接口讀寫中最復雜的自增讀方式用戶程序為例說明用戶接口程序的設計過程。要完成自增讀的操作,對于HPI一側,假設采用軟件握手的方式。要完成的工作如下:

首先讀HPIC以查詢其中的HRDY位是否為1,如果為1則表示DSP中數(shù)據(jù)已經(jīng)備妥。然后寫HPIA以告訴DSP從什么位置開始進行自增讀。接著將HPIC的FETCH位置1以刷新寫入。再讀HPIC以查詢其中的HRDY位是否為1,如果為1則表示DSP中數(shù)據(jù)已經(jīng)備妥。最后從HPID中讀取數(shù)據(jù)。

對于ARM一側,要對HPIC、HPID、HPIA寄存器進行讀寫必須滿足HPI接口的定義,具體如下(以自增讀為例):

讀前半字節(jié)(高16位)時,HCNTL0=0、HCNTL1=1、HR/W=1、HHWRL=0。

讀后半字節(jié)(低16位)時,HCNTL0=0、HCNTL1=1、HR/W=1、HHWRL=0。

從硬件的原理圖可知,這些HPI的控制口線分別與ARM的一部分地址總線連接。具體為HCNTL0----A2、HCNTL1----A3、HR/W------A4、HHWIL-----A5。

宏定義過程如下:

#define HPIC_R_F(HPI_VA_BASE)*((unsigned long*)((HPI_VA_BASE)+0x00000004+DSPNUMBER))

//讀HPIC第一半字

#define HPIC_R_S(HPI_VA_BASE)*((unsigned long*)((HPI_VA_BASE)+0x0000000C+DSPNUMBER))

//讀HPIC第二半字

等等,只要改變在HPI_BA_BASE基礎上增加的數(shù)字就可以獲取對控制口線的操作。

    在這里HPI_VA_BASE將由映射得到的用戶空間虛擬地址代替,所以如果“自增模式讀HPID第一半字”那么就可求滿足前文提到的HCNTL0=0、HCNTL1=1、HR/W=1、HHWRL=0,也就是要滿足地址位A2=0、A3=1、A4=1、A5=0,所以只要在HPI_VA_BASE的基礎上加0x0000_0006就可以了。要注意的是ARM處理器的地址是32位。所以是加上0x0000_0006而不是0x0000_0018。

另外,還有二點需要說明:

通過改變宏定義中的DSPNUMBER常量可以控制地址總線A6、A7、A8。通過這3個總線組合并通過簡單地址譯碼電路就可以完成對多塊DSP板的讀寫。在硬件電路中可以定義為0。

A4(HR/W)同時還用做SN74LVTH16245的方向控制。讀的時候A4=1,此時SN74LVTH16245的數(shù)據(jù)從A-->B;反之,則從B-->A。

下面給出程序中的自增讀和注釋部分:

int dev_hpi_auto1(str_HPI *ss)

{volatile unsigned long dsp_addr_hign_read_auto;//定義各種中間變量

volatile unsigned long dsp_addr_low_read_auto;

volatile unsigned long dsp_data_hign_read_auto;

volatile unsigned long dsp_data_low_read_auto;

volatile unsigned long dsp_add_temp;

int i;

volatile unsigned long data_length;

//---read hpic----the host polls the HPIC for HRDY=1

volatile unsigned long polltest;

polltest=HPIC_R_F((*ss).hpi_mmap_start);

while((polltest&0x00000008)!=0x00000008)

{polltest=HPIC_R_F((*ss).hpi_mmap_start);

}

dsp_add_temp=((*ss).hpi_dsp_add);//從應用程序傳過來的參數(shù),指明希望從DSP的哪一個地址讀起

dsp_addr_low_read_auto=((dsp_add_temp)&0x0000ffff)+((dsp_add_temp)<<16); //完成數(shù)據(jù)轉換

dsp_addr_hign_read_auto=((dsp_add_temp)&0xffff0000)+((dsp_add_temp)>>16);

//---write dsp s addr to HPIA

HPIA_W_F ((*ss).hpi_mmap_start)=(dsp_addr_hign_read_auto);

HPIA_W_S((*ss).hpi_mmap_start)=(dsp_addr_low_read_auto);

//--------write hpic----------to FETCH bit

HPIC_W_F((*ss).hpi_mmap_start)=0xfff8fff8;

HPIC_W_S((*ss).hpi_mmap_start)=0xfff8fff8;

//---read dsp s data from HPID,autoincrement mode

data_length=(*ss).hpi_dsp_data_length;//從應用程序傳過來的參數(shù),指明期望讀取多少個字

for(i=0;i<=data_length;i++)

{//---read hpic----the host polls the HPIC for HRDY=1 again

polltest=HPIC_R_F((*ss).hpi_mmap_start);

while((polltest&0x00000008)!=0x00000008)

{polltest=HPIC_R_F((*ss).hpi_mmap_start);

}

dsp_data_hign_read_auto =HPID_R_F_A((*ss).hpi_mmap_start); //讀第一個半字。

dsp_data_low_read_auto =HPID_R_S_A((*ss).hpi_mmap_start); //第二個個半字

{(*ss).buffer [(i)]=(dsp_data_hign_read_auto&oxffff0000)+(dsp_data_low_read_auto&0x0000ffff);

//數(shù)據(jù)拼接,放入結構體,回傳給調用的用戶程序。

}

}

} //dev_hpi_read_auto(str_HPI *ss)

5 結束語

本文通過一個實例說明了如何實現(xiàn)在Linux操作系統(tǒng)下ARM體系結構的處理器與DSP的數(shù)據(jù)通信。給出了接口部分的硬件處理和部分驅動程序。

在某款智能儀表的研發(fā)過程中,給出一個簡單的地址譯碼電路對二塊(或更多)DSP板進行交替讀寫,并以自增讀方式進行操作,當ARM主頻為180MHz,DSP主頻為125MHz時,對DSP數(shù)據(jù)的讀寫速度可以達到每毫秒1k的32位字。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉