www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 消費電子 > 消費電子
[導(dǎo)讀]BLDC 電機(jī)通過反向電機(jī)設(shè)置消除了使用機(jī)械換向器的要求;繞組成為定子,永磁體成為轉(zhuǎn)子的一部分。 繞組通常由使用脈沖寬度調(diào)制 (PWM) 控制的六 MOSFET 電橋供電,它們按照控制次序進(jìn)行轉(zhuǎn)向,產(chǎn)生旋轉(zhuǎn)磁場,從而“拖拽”圍繞它的轉(zhuǎn)子并驅(qū)動相連的負(fù)載

BLDC 電機(jī)基本原理

BLDC 電機(jī)通過反向電機(jī)設(shè)置消除了使用機(jī)械換向器的要求;繞組成為定子,永磁體成為轉(zhuǎn)子的一部分。 繞組通常由使用脈沖寬度調(diào)制 (PWM) 控制的六 MOSFET 電橋供電,它們按照控制次序進(jìn)行轉(zhuǎn)向,產(chǎn)生旋轉(zhuǎn)磁場,從而“拖拽”圍繞它的轉(zhuǎn)子并驅(qū)動相連的負(fù)載(圖 1)。

 

 

換向由轉(zhuǎn)子和定子的相對位置確定,具體則通過霍爾效應(yīng)傳感器測量,或通過電機(jī)轉(zhuǎn)動時生成的反電動勢 (EMF) 幅度測量(限無傳感器電機(jī))。

目前有三種電子換向控制方案:梯形、正弦和磁場定向控制 (FOC)。 FOC 實現(xiàn)成本高,專用于高端應(yīng)用,因此本文不做討論。

對于許多應(yīng)用,梯形控制的 BLDC 電機(jī)是最佳解決方案。 這類電機(jī)結(jié)構(gòu)緊湊、性能可靠,且價格也在迅速下降,因此尤其適合許多小型電機(jī)應(yīng)用,包括汽車、白色家電和計算機(jī)。

此外,梯形技術(shù)最容易實現(xiàn),因此也最受歡迎。 電機(jī)每相由直流供電,每 60? 進(jìn)行換向。 相位驅(qū)動為“高”、“低”或保持浮動狀態(tài)。

理論上,這樣的系統(tǒng)可產(chǎn)生平滑、恒定扭矩。 實際上,特定相位的電流不可能瞬間由低轉(zhuǎn)為高。 相反,所導(dǎo)致的上升時間在輸出中生成與轉(zhuǎn)向定時一致的波紋(圖 2)。

 

 

轉(zhuǎn)矩波動不是梯形控制 BLDC 電機(jī)的唯一缺點。 另一個缺點是電氣和聲學(xué)噪聲。 一個重要的噪聲來源就是為每個相位供電的快速切換直流電流。 從電氣角度來說,這種噪聲會加熱繞組并降低效能。 從聲學(xué)角度來說,開關(guān)頻率及其諧波產(chǎn)生的“嗡嗡”聲音頻率雖然不是很大,但十分刺耳。

(有關(guān) BLDC 電機(jī)運行和梯形控制方案的詳細(xì)信息,請參閱資料庫文章《如何對無刷直流電機(jī)進(jìn)行供電和控制》。)

實施正弦控制

正弦控制十分復(fù)雜,很少有工程師可以僅借用基本原理就實現(xiàn)系統(tǒng)。 一個更好的方法就是利用芯片供應(yīng)商的知識和 BLDC 電機(jī)設(shè)計開發(fā)套件。 NXP 的 FRDM-KE04Z 就是一個例子。

它利用 Kinetis KE04 ARM? Cortex?-M0 MCU 運行正弦算法。 由于控制電路設(shè)計基于一種普通的 BLDC 驅(qū)動器芯片,因此進(jìn)一步減輕了實現(xiàn)難度。 這些設(shè)備通常將 PWM 控制和電力電子器件集成到一個芯片,并提供外部 MCU 的接口。 其他設(shè)備集成 MCU,僅需一些額外的無源元器件就可以形成完整電路。

正弦替代方式:“鞍形”圖

實踐中極少使用純正弦驅(qū)動電壓,因為相對于接地而言,為每個電機(jī)端子生成電壓的效率很低。 一個更好的方法就是在相位間生成正弦差分電壓,相位偏移 120? 進(jìn)行換向。 實現(xiàn)方式是通過使用“鞍形”圖(而不是正弦)改變相對于接地的 PWM 占空比(以及驅(qū)動電壓)(圖 3)。 隨后,驅(qū)動電機(jī)的相電流就遵循相間電壓的純正弦波變化。

 

 

鞍形圖方法有兩個優(yōu)點: 第一,所產(chǎn)生的最大差分電壓要高于純正弦信號所能產(chǎn)生的電壓,因而給定輸入的扭矩和速度也更大。 第二,每個端子 1/3 時間輸出為零,進(jìn)一步減少了功率級中的開關(guān)損耗。

正弦控制方法的一個復(fù)雜之處在于:根據(jù)形成鞍形電壓輸入所必需的電機(jī)角度來精確控制占空比。 這在高速旋轉(zhuǎn)時甚至變得更加困難。 挑戰(zhàn)主要在于每轉(zhuǎn)只能精確確定電機(jī)位置六次,而轉(zhuǎn)子的其中一個磁極經(jīng)過三個霍爾傳感器中的一個。 例如,F(xiàn)RDM-KE04Z 常用的解決方案是將電機(jī)角速度乘以 ?T 并假定電機(jī)速度恒定,從而估算霍爾傳感器之間的電機(jī)角度 (“mtrAngle”)。

然后使用查詢表確定特定角度的 PWM 占空比。 在 FRDM-KE04Z 中,查詢表為電機(jī)旋轉(zhuǎn)的每個角度(實際 384 個增量)提供占空比。

此類方法利用了使用鞍形圖的附帶影響。 特別說明:由于特定相位的電壓值在三分之一時間內(nèi)為零,這段時間不需要查詢,因而需要的處理器資源更少,并允許在應(yīng)用中使用更普通的低成本 MCU。

這種方法的缺點是啟動階段電機(jī)快速加速時,霍爾傳感器之間的電機(jī)速度插值很可能不精確。 這會導(dǎo)致扭矩響應(yīng)不平穩(wěn)。

針對這一問題,ROHM Semiconductor 的 BD62011FS 風(fēng)扇電機(jī)控制器采用的一種常見解決方案是:以梯形控制模式啟動電機(jī),在達(dá)到特定速度(通常 5 - 100 Hz)后切換到正弦控制,此時插值的精確度更高。

Rohm 的設(shè)備主要針對配備霍爾傳感器的 BLDC 電機(jī)的控制。 芯片采用高壓側(cè)和低壓側(cè) MOSFET 的 PWM 控制和正弦換向邏輯。 它可在 10 到 18 V 輸入范圍內(nèi)運行,并提供介于 2.1 和 5.4 V(最高 1 W)的輸出范圍。 目標(biāo)應(yīng)用包括空調(diào)、水泵和白色家電。

另一個設(shè)計挑戰(zhàn)是給定相位驅(qū)動電壓和產(chǎn)生的正弦波電流之間的相位延遲,通常發(fā)生于非補(bǔ)償型 BLDC 電機(jī)。 電機(jī)可正常運行,但效能將降低,這會首先挫敗實現(xiàn)正弦控制方案的目標(biāo)。 這種效能低下的原因不是驅(qū)動電壓和相位電流之間的相位延遲,而是相位電流和正弦反電動勢之間的相位延遲。

幸運的是,許多驅(qū)動芯片,包括 ON Semiconductor 的 LV8811G 功率 MOSFET 驅(qū)動器,允許設(shè)計人員在正弦驅(qū)動電流中引入超前相角,從而確保其峰值與反電動勢的峰值一致。 超前相角通常設(shè)為隨輸入電壓線性增加,而電壓決定電機(jī)速度(圖 4)。

 

 

LV8811G 是三相 BLDC 電機(jī)驅(qū)動器,由單個霍爾傳感器控制并采用正弦控制。 直接 PWM 脈沖輸入或直流電壓輸入都可用于控制電機(jī)轉(zhuǎn)速。

使用 LV118811G 時,設(shè)計人員可通過引腳 PH1 和 PH2 上的分壓電阻器來設(shè)置初始條件:相角開始超前的速度和超前相角斜坡的梯度。 之后芯片的內(nèi)部邏輯根據(jù)預(yù)定公式確定給定速度的超前相角。

無傳感器 BLDC 正弦控制

正弦控制還可通過無傳感器的 BLDC 電機(jī)實現(xiàn)。 這些電機(jī)的運行方式與使用霍爾效應(yīng)傳感器的電機(jī)相似,除了位置信息是通過測量反電動勢獲得。 (有關(guān)詳細(xì)信息,請參閱資料庫文章《通過反電動勢控制無傳感器的 BLDC 電機(jī)》。)

例如,Texas Instruments 的 DRV10983 就是設(shè)計用于無傳感器的 BLDC 電機(jī)的正弦控制。 芯片集成電力電子器件,可以連接外部 MCU 并提供高達(dá) 2 A 的連續(xù)驅(qū)動電流。正弦控制通過使用公司的專有控制方案來實現(xiàn)。

在該方案中,換向控制算法連續(xù)測量電機(jī)相電流并定期測量供電電壓。 然后,設(shè)備使用該信息計算反電動勢和電機(jī)位置。 電機(jī)速度由單位時間內(nèi)一個相位的反電動勢的過零次數(shù)確定。 芯片還允許超前相角,以調(diào)整相電流和反電動勢,從而實現(xiàn)最大效能。

DRV10983 是專門設(shè)計用于成本敏感、低噪聲、低外部元器件計數(shù)的應(yīng)用(圖 5)。

 

 

總結(jié)

BLDC 電機(jī)由于性能和可靠性的優(yōu)勢,正逐漸成為傳統(tǒng)有刷型電機(jī)的替代產(chǎn)品。 對于許多應(yīng)用,梯形控制可滿足使用預(yù)期,但如果設(shè)計人員的任務(wù)是提高效能、減少電氣和聲學(xué)噪聲并提高扭矩傳遞,則應(yīng)考慮正弦控制。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護(hù)是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機(jī)驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機(jī)驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉