www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀] 多數(shù)情況下,輸入噪聲越低越好,但在某些情況下,輸入噪聲實際上有助于實現(xiàn)更高的分辨率。這似乎毫無道理,不過繼續(xù)閱讀本指南,就會明白為什么有些噪聲是好的噪聲?! ≌酆系捷斎攵嗽肼?代碼躍遷噪聲)   實際

 多數(shù)情況下,輸入噪聲越低越好,但在某些情況下,輸入噪聲實際上有助于實現(xiàn)更高的分辨率。這似乎毫無道理,不過繼續(xù)閱讀本指南,就會明白為什么有些噪聲是好的噪聲。

  折合到輸入端噪聲(代碼躍遷噪聲)
 

  實際的ADC在許多方面與理想的ADC有偏差。折合到輸入端的噪聲肯定不是理想情況下會出現(xiàn)的,它對ADC整體傳遞函數(shù)的影響如圖1所示。隨著模擬輸入電壓提高,"理想"ADC(如圖1A所示)保持恒定的輸出代碼,直至達(dá)到躍遷區(qū),此時輸出代碼即刻跳變?yōu)橄乱粋€值,并且保持該值,直至達(dá)到下一個躍遷區(qū)。理論上,理想ADC的"代碼躍遷"噪聲為0,躍遷區(qū)寬度也等于0.實際的ADC具有一定量的代碼躍遷噪聲,因此躍遷區(qū)寬度取決于折合到輸入端噪聲的量(如圖1B所示)。圖1B顯示的情況是代碼躍遷噪聲的寬度約為1個LSB(最低有效位)峰峰值。

  

 

  圖1:代碼躍遷噪聲(折合到輸入端噪聲)及其對ADC傳遞函數(shù)的影響

  由于電阻噪聲和"kT/C"噪聲,所有ADC內(nèi)部電路都會產(chǎn)生一定量的均方根(RMS)噪聲。即使是直流輸入信號,此噪聲也存在,它是代碼躍遷噪聲存在的原因。如今通常把代碼躍遷噪聲稱為"折合到輸入端噪聲",而不是直接使用"代碼躍遷噪聲"這一說法。折合到輸入端噪聲通常用ADC輸入為直流值時的若干輸出樣本的直方圖來表征。大多數(shù)高速或高分辨率ADC的輸出為一系列以直流輸入標(biāo)稱值為中心的代碼(見圖2)。為了測量其值,ADC的輸入端接地或連接到一個深度去耦的電壓源,然后采集大量輸出樣本并將其表示為直方圖(有時也稱為"接地輸入"直方圖)。由于噪聲大致呈高斯分布,因此可以計算直方圖的標(biāo)準(zhǔn)差σ,它對應(yīng)于有效輸入均方根噪聲。參考文獻(xiàn)1詳細(xì)說明了如何根據(jù)直方圖數(shù)據(jù)計算σ值。該均方根噪聲雖然可以表示為以ADC滿量程輸入范圍為基準(zhǔn)的均方根電壓,但慣例是用LSB rms來表示。

  

 

  圖2:折合到輸入端噪聲對ADC"接地輸入端"直方圖的影響(ADC具有少量DNL)

  雖然ADC固有的微分非線性(DNL)可能會導(dǎo)致其噪聲分布與理想的高斯分布有細(xì)微的偏差(圖2示例中顯示了部分DNL),但它至少大致呈高斯分布。如果DNL比較大,則應(yīng)計算多個不同直流輸入電壓的值,然后求平均值。例如,如果代碼分布具有較大且獨特的峰值和谷值,則表明ADC設(shè)計不佳,或者更有可能的是PCB布局布線錯誤、接地不良、電源去耦不當(dāng)(見圖3)。當(dāng)直流輸入掃過ADC輸入電壓范圍時,如果分布寬度急劇變化,這也表明存在問題。

  

 

  圖3:設(shè)計不佳的ADC和/或布局布線、接地、去耦不當(dāng)?shù)慕拥剌斎攵酥狈綀D無噪聲(無閃爍)代碼分辨率

 

  ADC的無噪聲代碼分辨率是指這樣一個位數(shù),如果超過該位數(shù),則無法明確無誤地解析各個代碼,原因是存在所有ADC都具有的有效輸入噪聲(或折合到輸入端噪聲),如上文所述。該噪聲可以表示為均方根量,單位通常是LSB rms.乘以系數(shù)6.6可以將均方根噪聲轉(zhuǎn)換為峰峰值噪聲(用"LSB峰峰值"表示)。N位ADC的總范圍為2NLSB.因此,無噪聲采樣總數(shù)等于:

  

 

  對無噪聲采樣數(shù)求以2為底的對數(shù)可以得到無噪聲代碼分辨率:

  

 

  無噪聲代碼分辨率規(guī)格一般與高分辨率-型測量ADC相關(guān),通常是采樣速率、數(shù)字濾波器帶寬和可編程增益放大器(PGA)增益的函數(shù)。圖4所示為從-型測量ADC AD7730獲得的一個典型數(shù)據(jù)表。

  

 

  圖4:Σ-Δ型ADC AD7730的無噪聲代碼分辨率

  注意,當(dāng)輸出數(shù)據(jù)速率為50 Hz、輸入范圍為±10 mV時,無噪聲代碼分辨率為16.5位(80,000無噪聲采樣)。這些條件下的建立時間為460 ms,因此該ADC是精密電子秤應(yīng)用的理想之選。對于適合精密測量應(yīng)用的高分辨率-型ADC,大部分?jǐn)?shù)據(jù)手冊都提供了類似的數(shù)據(jù)。

  有時候會利用滿量程范圍與均方根輸入噪聲(而非峰峰值噪聲)的比值來計算分辨率,該分辨率稱為"有效分辨率".注意:在相同條件下,有效分辨率比無噪聲代碼分辨率高log2(6.6),約2.7位。

  

 

  有些制造商更愿意規(guī)定有效分辨率,而不是無噪聲代碼分辨率,因為前者的位數(shù)較高。用戶應(yīng)仔細(xì)檢查數(shù)據(jù)手冊,弄清它到底指定哪一種分辨率。

  通過數(shù)字均值法提高ADC分辨率并降低噪聲

  折合到輸入端噪聲的影響可以通過數(shù)字均值方法降低。假設(shè)一個16位ADC具有15位無噪聲分辨率,采樣速率為100 kSPS.對于每個輸出樣本,如果對兩個樣本進(jìn)行平均,則有效采樣速率降至50 kSPS,SNR提高3 dB,無噪聲位數(shù)提高到15.5位。如果對四個樣本進(jìn)行平均,則采樣速率降至25 kSPS,SNR提高6 dB,無噪聲位數(shù)提高到16位。

  事實上,如果對16個樣本進(jìn)行平均,則輸出采樣速率降至6.25 kSPS,SNR再提高6 dB,無噪聲位數(shù)提高到17位。為了利用額外的"分辨率",均值算法必須在較大的有效位數(shù)上執(zhí)行。

  均值過程還有助于消除ADC傳遞函數(shù)的DNL誤差,這可以通過下面的簡單例子來說明:假設(shè)ADC在量化電平"k"處有一個失碼,雖然代碼"k"由于DNL誤差較大而丟失,但兩個相鄰代碼k – 1和k + 1的平均值等于k.

  因此,可以利用該技術(shù)來有效提高ADC的動態(tài)范圍,代價是整體輸出采樣速率降低并且需要額外的數(shù)字硬件。不過應(yīng)注意,均值并不能校正ADC固有的積分非線性。

  現(xiàn)在考慮這樣一種情況:ADC的折合到輸入端噪聲非常低,直方圖總是顯示一個明確的代碼,對于這種ADC,數(shù)字均值有何作用呢?答案很簡單--沒有作用!無論對多少樣本進(jìn)行平均,答案始終相同。但只要將足夠大的噪聲增加到輸入信號中,使得直方圖中有一個以上的代碼,那么均值方法又會發(fā)揮效用。因此,少量噪聲可能是好事情(至少對于均值方法而言),但輸入端存在的噪聲越高,為實現(xiàn)相同分辨率所需的均值樣本數(shù)越多。

  切勿將有效位數(shù)(ENOB)與有效分辨率或無噪聲代碼分辨率混為一談

  由于這些術(shù)語名稱相似,"有效位數(shù)"和"有效分辨率"常被誤認(rèn)為是一回事,事實并非如此。

  有效位數(shù)(ENOB)來自對ADC輸出的FFT分析,條件是用一個滿量程正弦波輸入信號激勵A(yù)DC.計算所有噪聲和失真項的和方根(RSS)值,信號對噪聲和失真的比值定義為信納比SINAD或S/(N+D)。理想N位ADC的理論SNR為:

  

 

  將計算所得的SINAD值替換等式5中的SNR,并求解N,便得到ENOB:

  

 

  用于計算SINAD和ENOB的噪聲和失真不僅包括折合到輸入端噪聲,而且包括量化噪聲和失真項。SINAD和ENOB用于衡量ADC的動態(tài)性能,有效分辨率和無噪聲代碼分辨率則用于衡量ADC在無量化噪聲的直流輸入條件下的噪聲。利用噪聲擾動提高ADC無雜散動態(tài)范圍

 

  對于高速ADC,若要最大程度地提高SFDR,存在兩個基本限制:第一是前端放大器和采樣保持電路產(chǎn)生的失真;第二是ADC編碼器部分的實際傳遞函數(shù)的非線性所導(dǎo)致的失真。

  提高SFDR的關(guān)鍵是盡可能降低以上兩種非線性。

  要顯著降低ADC前端引起的固有失真,在ADC外部著力是徒勞的。然而,ADC編碼器傳遞函數(shù)的微分非線性可以通過適當(dāng)利用擾動(即外部噪聲,與ADC的模擬輸入信號相加)來降低。

  在一定的條件下,擾動可以改善ADC的SFDR(參考文獻(xiàn)2-5)。例如,即使在理想ADC中,量化噪聲與輸入信號也有某種相關(guān)性,這會降低ADC的SFDR,特別是當(dāng)輸入信號恰好為采樣頻率的約數(shù)時。將寬帶噪聲(幅度約為? LSB rms)與輸入信號相加往往會使量化噪聲隨機(jī)化,從而降低其影響(見圖5A)。然而,在大多數(shù)系統(tǒng)中,信號之上有足夠的噪聲,因此無需額外添加擾動噪聲。ADC的折合到輸入端噪聲也可能足以產(chǎn)生同樣的效果。將寬帶均方根噪聲電平提高約1 LSB以上會成比例地降低ADC SNR,且性能不會有進(jìn)一步的提高。

  還有其它一些方案,都使用更大數(shù)量的擾動噪聲,使ADC的傳遞函數(shù)隨機(jī)化。圖5B還顯示了一個由驅(qū)動DAC的偽隨機(jī)數(shù)發(fā)生器組成的擾動噪聲源,此信號從ADC輸入信號中減去后,以數(shù)字方式增加到ADC輸出中,從而不會導(dǎo)致SNR性能顯著下降。這種技術(shù)本身有一個缺點,即隨著擾動信號的幅度增大,允許的輸入信號擺幅會減小。之所以需要減小信號幅度,是為了防止過驅(qū)ADC.應(yīng)當(dāng)注意,這種方案不能顯著改善ADC前端產(chǎn)生的失真,只能改善ADC編碼器傳遞函數(shù)的非線性所引起的失真。

  

 

  圖5:利用擾動使ADC傳遞函數(shù)隨機(jī)化

  還有一種方法更容易實現(xiàn),尤其是在寬帶接收機(jī)中,即注入信號目標(biāo)頻帶以外的一個窄帶擾動信號,如圖6所示。一般來說,信號成分不會位于接近DC的頻率范圍,因此該低頻區(qū)常用于這種擾動信號。擾動信號可能還位于略低于fs/2的地方。相對于信號帶寬,擾動信號僅占用很小的帶寬(數(shù)百kHz帶寬通常即足夠),因此SNR性能不會像在寬帶擾動下那樣顯著下降。

  

 

  圖6:注入帶外擾動以改善ADC SFDR

  分級流水線式ADC,例如圖7所示的14位105 MSPS ADC AD6645,在ADC范圍內(nèi)的特定代碼躍遷點有非常小的差分非線性誤差。AD6645由一個5位ADC1、一個5位ADC2和一個6位ADC3組成。嚴(yán)重的DNL誤差僅出現(xiàn)在ADC1躍遷點,第二級和第三級ADC的DNL誤差非常小。ADC1有25 = 32個相關(guān)的決策點,每隔68.75 mV (29 = 512 LSB)出現(xiàn)一個(2.2 V滿量程輸入范圍)。圖8以夸張形式顯示了這些非線性誤差。

  

 

  圖7:14位105 MSPS ADC AD6645簡化框圖

  

 

  圖8:AD6645分級點DNL誤差(夸張顯示)對于最高約為200 MHz的模擬輸入,AD6645前端產(chǎn)生的失真成分與編碼器產(chǎn)生的失真相比可忽略不計。這就是說,AD6645傳遞函數(shù)的靜態(tài)非線性是SFDR性能的主要限制。

 

  目標(biāo)是選擇適當(dāng)?shù)膸鈹_動量,使得這些微小DNL誤差的影響在ADC整個輸入范圍內(nèi)隨機(jī)化,從而降低平均DNL誤差。這可以通過實驗方法確定,覆蓋大約兩個ADC1躍遷區(qū)的峰峰值擾動噪聲對DNL的改善最佳。更高的噪聲量不會明顯改善DNL.兩個ADC1躍遷區(qū)覆蓋1024 LSB峰峰值,或者大約155 LSB rms(峰峰值高斯噪聲除以6.6即得到均方根值)。

  圖9中的第一幅圖顯示一小部分輸入信號范圍內(nèi)的無擾動DNL.水平軸經(jīng)過放大,以顯示兩個相距68.75 mV (512 LSB)的分級點。第二幅圖顯示增加155 LSB rms擾動后的DNL,該擾動量相當(dāng)于大約–20.6 dBm.請注意,DNL得到顯著改善。

  

 

  圖9:無擾動和有擾動的AD6645 DNL

  擾動噪聲可以通過多種方式產(chǎn)生??梢允褂迷肼暥O管,但簡單地放大器寬帶雙極性運放的輸入電壓噪聲是更經(jīng)濟(jì)的解決方案,這種方法已在參考文獻(xiàn)3、4、5中詳細(xì)說明,在此恕不贅述。

  利用帶外擾動獲得的SFDR大幅改善結(jié)果如圖10的深(1,048,576點)FFT所示,其中AD6645以80 MSPS的速率對一個–35 dBm、30.5 MHz信號進(jìn)行采樣。請注意,無擾動時SFDR約為92 dBFS,有擾動時約為108 dBFS,提高幅度達(dá)16 dB!

  

 

  圖10:無擾動和有擾動的AD6645 FFT圖

  AD6645 ADC由ADI公司于2000年推出,直到最近,它仍是代表SFDR極致性能的產(chǎn)品。自從推出該器件后,工藝技術(shù)和電路設(shè)計兩方面的進(jìn)步推動ADC向更高性能發(fā)展,例如AD9444(14位、80 MSPS)、AD9445(14位、105/125 MSPS)和AD9446(16位、80/100 MSPS),這些ADC具有非常高的SFDR(對于70 MHz滿量程輸入信號,典型值大于90 dBc)和低DNL.

  在一定的輸入信號條件下,增加適當(dāng)?shù)膸鈹_動信號同樣可以改善SFDR性能。

  圖11顯示了有擾動和無擾動下的AD9444(14位、80MSPS)FFT.在這些輸入條件下,添加擾動使SFDR提高25 dB.所示數(shù)據(jù)是利用ADIsimADC程序和AD9444模型獲得。

  

 

  圖11:14位、80MSPS ADC AD9444,fs = 80MSPS,fin = 30.5MHz,信號幅度 = –40dBFS

  雖然圖10和圖11所示的結(jié)果相當(dāng)驚人,但不應(yīng)認(rèn)為,增加帶外噪聲擾動一定就會改善ADC的SFDR,或者在所有條件下都適用。正如之前提到的,擾動無法改善ADC前端電路的線性度。即使是近乎理想的前端,擾動的效果也將高度依賴于輸入信號的幅度和擾動信號本身的幅度。例如,當(dāng)信號接近ADC的滿量程輸入范圍時,傳遞函數(shù)的積分非線性可能會成為確定SFDR的限制因素,擾動將沒有助益。務(wù)必認(rèn)真研究數(shù)據(jù)手冊,某些情況下,其中可能給出了有擾動和無擾動的數(shù)據(jù)以及幅度和帶寬建議。擾動可能是更新一代中頻采樣ADC的內(nèi)置特性。

  結(jié)束語

  在本文中,我們說明了所有ADC都有一定量的折合到輸入端噪聲。在精密、低頻測量應(yīng)用中,以數(shù)字方式對ADC輸出數(shù)據(jù)求平均值可以降低該噪聲,代價是采樣速率會降低并且需要額外的硬件。該均值方法實際上可以提高ADC的分辨率,但無法降低積分非線性誤差。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉