在電子信號處理領(lǐng)域,濾波器作為關(guān)鍵組件,用于選擇特定頻率范圍的信號,抑制不需要的頻率成分。開關(guān)電容濾波器(Switched - Capacitor Filter, SCF)和有源濾波器(Active Filter)是兩種常見的濾波器類型,它們在成本、精度和調(diào)諧復(fù)雜度等方面各有特點。深入對比這兩類濾波器的這些特性,有助于工程師在不同應(yīng)用場景下做出更合適的選擇。
MEMS(微機電系統(tǒng))加速度計作為一種重要的傳感器,廣泛應(yīng)用于消費電子、汽車安全、工業(yè)控制等領(lǐng)域。其模擬前端設(shè)計是決定加速度計性能的關(guān)鍵環(huán)節(jié),負責(zé)將微弱的機械信號轉(zhuǎn)換為可處理的電信號,并進行數(shù)字化處理。本文將詳細介紹MEMS加速度計模擬前端從電荷放大到Σ - Δ調(diào)制的設(shè)計過程。
工業(yè)4.0代表著制造業(yè)的智能化、數(shù)字化和自動化變革,在這一進程中,精確的電流檢測對于設(shè)備狀態(tài)監(jiān)測、能源管理以及系統(tǒng)控制至關(guān)重要。高邊采樣與隔離運放作為電流檢測中的關(guān)鍵技術(shù),其精度直接影響著整個系統(tǒng)的性能。本文將深入探討工業(yè)4.0環(huán)境下,通過優(yōu)化高邊采樣電路和隔離運放設(shè)計來提升電流檢測精度的方案。
超聲波換能器作為將電能與聲能相互轉(zhuǎn)換的關(guān)鍵器件,在醫(yī)療成像、工業(yè)清洗、無損檢測等眾多領(lǐng)域發(fā)揮著不可或缺的作用。然而,超聲波換能器與驅(qū)動電路之間的阻抗不匹配問題,會嚴(yán)重影響功率傳輸效率,導(dǎo)致能量損耗增加、系統(tǒng)性能下降。因此,實現(xiàn)超聲波換能器的阻抗匹配,從諧振頻率追蹤到功率傳輸優(yōu)化,是提升超聲波系統(tǒng)性能的關(guān)鍵環(huán)節(jié)。
在當(dāng)今追求高效能與低功耗的電子系統(tǒng)設(shè)計中,動態(tài)電壓調(diào)節(jié)(Dynamic Voltage and Frequency Scaling,DVFS)技術(shù)成為了一項關(guān)鍵策略。它通過動態(tài)調(diào)整處理器或模擬電路的供電電壓和時鐘頻率,在滿足系統(tǒng)性能需求的同時,最大程度地降低功耗。這一技術(shù)在汽車電子領(lǐng)域尤為重要,因為汽車電子系統(tǒng)對可靠性、能效以及實時性有著極高的要求。本文將深入探討DVFS技術(shù)的理論基礎(chǔ),并剖析其在汽車電子實踐中的應(yīng)用。
隨著半導(dǎo)體技術(shù)不斷邁向納米級工藝節(jié)點,芯片的集成度日益提高,功能愈發(fā)強大。然而,納米級工藝在帶來諸多優(yōu)勢的同時,也給模擬電源設(shè)計帶來了前所未有的挑戰(zhàn)。傳統(tǒng)的電源架構(gòu)難以滿足納米級工藝下芯片對電源性能、效率和面積的嚴(yán)苛要求。在此背景下,低壓差線性穩(wěn)壓器(LDO)與開關(guān)穩(wěn)壓器的混合架構(gòu)應(yīng)運而生,成為應(yīng)對這些挑戰(zhàn)的有效解決方案。
模擬電路在現(xiàn)代電子系統(tǒng)中占據(jù)著至關(guān)重要的地位,廣泛應(yīng)用于通信、醫(yī)療、航空航天等眾多領(lǐng)域。然而,模擬電路由于其自身的復(fù)雜性和元件參數(shù)的容差特性,極易發(fā)生軟故障。軟故障通常表現(xiàn)為元件參數(shù)的緩慢變化,不像硬故障那樣會導(dǎo)致電路完全失效,但卻會逐漸影響電路的性能,甚至引發(fā)嚴(yán)重的系統(tǒng)故障。因此,準(zhǔn)確、高效地診斷模擬電路軟故障具有重要的現(xiàn)實意義。模糊理論和神經(jīng)網(wǎng)絡(luò)作為兩種強大的智能技術(shù),將它們?nèi)诤蠎?yīng)用于模擬電路軟故障診斷,能夠充分發(fā)揮各自的優(yōu)勢,提高診斷的準(zhǔn)確性和可靠性。
隨著汽車智能化、電動化、網(wǎng)聯(lián)化進程的加速,汽車電子系統(tǒng)的復(fù)雜度與集成度日益提高。車內(nèi)電子設(shè)備數(shù)量大幅增加,它們之間以及與外界環(huán)境的電磁相互作用愈發(fā)頻繁且復(fù)雜。電磁兼容性(EMC)問題由此成為汽車電子系統(tǒng)可靠運行的關(guān)鍵挑戰(zhàn)。ISO 11452-4作為汽車電子輻射抗擾度測試的重要標(biāo)準(zhǔn),為評估汽車電子設(shè)備在復(fù)雜電磁環(huán)境下的抗干擾能力提供了規(guī)范框架,而輻射抗擾度設(shè)計則是確保汽車電子產(chǎn)品在實際應(yīng)用中具備良好EMC性能的核心環(huán)節(jié)。
奈奎斯特采樣定理作為信號處理領(lǐng)域的基石理論,由美國工程師哈里·奈奎斯特在 1928 年提出,在奧本海姆等學(xué)者的經(jīng)典著作中得到了深入闡述與系統(tǒng)講解。它明確了為能從采樣信號中無失真地恢復(fù)原始連續(xù)信號,采樣頻率必須至少是信號最高頻率的兩倍。然而,在實際工程應(yīng)用中,許多工程師由于對定理理解不夠深入或忽視了一些關(guān)鍵因素,常常陷入各種誤區(qū),導(dǎo)致信號處理效果不佳甚至出現(xiàn)嚴(yán)重錯誤。
Wi-Fi模塊又名串口Wi-Fi模塊,屬于物聯(lián)網(wǎng)傳輸層,功能是將串口或TTL電平轉(zhuǎn)為符合Wi-Fi無線網(wǎng)絡(luò)通信標(biāo)準(zhǔn)的嵌入式模塊,內(nèi)置無線網(wǎng)絡(luò)協(xié)議IEEE802.11b.g.n協(xié)議棧以及TCP/IP協(xié)議棧。
?PWM驅(qū)動功率MOS管?是指通過PWM(脈沖寬度調(diào)制)信號來控制功率MOS管的開關(guān)狀態(tài),從而實現(xiàn)功率放大和能量轉(zhuǎn)換的一種技術(shù)。
在現(xiàn)代電子技術(shù)領(lǐng)域,MOS 管(金屬 - 氧化物半導(dǎo)體場效應(yīng)晶體管)作為一種關(guān)鍵的半導(dǎo)體器件,廣泛應(yīng)用于各類電路中。從智能手機到計算機主板,從電源管理到功率放大,MOS 管都扮演著不可或缺的角色。然而,對于許多電子技術(shù)初學(xué)者甚至部分從業(yè)者來說,MOS 管的導(dǎo)通條件始終是一個令人困惑的問題。本文將深入探討 MOS 管的導(dǎo)通條件,揭開其神秘的面紗。
跳頻技術(shù) (Frequency-Hopping Spread Spectrum; FHSS)在同步、且同時的情況下,收發(fā)兩端以特定型式的窄頻載波來傳送訊號,對于一個非特定的接收器,F(xiàn)HSS所產(chǎn)生的跳動訊號對它而言,也只算是脈沖噪聲。
通過簡單的公式可以知道,功率越大,充電時間就越短。本文考慮的是三相電源,其所能提供的功率最高為單相電源的3 倍。
國產(chǎn)碳化硅(SiC)功率器件綜合優(yōu)勢扳倒進口GaN功率半導(dǎo)體,國產(chǎn)碳化硅(SiC)功率器件在成本、可靠性和應(yīng)用場景上的優(yōu)勢。