加速度計,是測量運載體線加速度的儀表。加速度計由檢測質(zhì)量(也稱敏感質(zhì)量)、支承、電位器、彈簧、阻尼器和殼體組成。其中,在測量飛機過載的加速度計是最早獲得應用的飛機儀表之一。
加速度計 (accelerometer) 測量加速度的儀表。加速度測量是工程技術(shù)提出的重要課題。當物體具有很大的加速度時,物體及其所載的儀器設(shè)備和其他無相對加速度的物體均受到能產(chǎn)生同樣大的加速度的力,即受到動載荷。欲知動載荷就要測出加速度。其次,要知道各瞬時飛機、火箭和艦艇所在的空間位置,可通過慣性導航(見陀螺平臺慣性導航系統(tǒng))連續(xù)地測出其加速度,然后經(jīng)過積分運算得到速度分量,再次積分得到一個方向的位置坐標信號,而三個坐標方向的儀器測量結(jié)果就綜合出運動曲線并給出每瞬時航行器所在的空間位置。再如某些控制系統(tǒng)中,常需要加速度信號作為產(chǎn)生控制作用所需的信息的一部分,這里也出現(xiàn)連續(xù)地測量加速度的問題。能連續(xù)地給出加速度信號的裝置稱為加速度傳感器。
加速度計是一種非常不錯的傳感器,可以檢測到開始傾塌的大橋在重力作用下,呈現(xiàn)細微的方向變化時的靜態(tài)和動態(tài)加速度。這些傳感器包括當您傾斜手機顯示屏時,可以改變顯示屏方向的手機應用器件,也包括受出口管制,可以幫助軍用車輛或航天器導航的戰(zhàn)術(shù)級器件。1但是,與大多數(shù)傳感器一樣,該傳感器在實驗室或試驗臺上表現(xiàn)出色是一回事,面對荒涼、不受控制的環(huán)境條件和溫度應力時要保持同等的系統(tǒng)級性能,則完全是另一回事了。像人類一樣,當加速度計在其生命周期中承受了前所未有的應力時,系統(tǒng)會做出反應并可能因這些應力的影響而發(fā)生故障。
常見加速度計的構(gòu)件如下:外殼(與被測物體固連)、參考質(zhì)量,敏感元件、信號輸出器等。加速度計要求有一定量程和精確度、敏感性等,這些要求在某種程度上往往是矛盾的。以不同原理為依據(jù)的加速度計,其量程不同(從幾個g到幾十萬個g),它們對突變加速度頻率的敏感性也各不相同。常見的加速度計所依據(jù)的原理有:①參考質(zhì)量由彈簧與殼體相連(見圖),它和殼體的相對位移反映出加速度分量的大小,這個信號通過電位器以電壓量輸出;②參考質(zhì)量由彈性細桿與殼體固連,加速度引起的動載荷使桿變形,用應變電阻絲感應變形的大小,其輸出量是正比于加速度分盤大小的電信號;③參考質(zhì)量通過壓電元件與殼體固連,質(zhì)量的動載荷對壓電元件產(chǎn)生壓力,壓電元件輸出與壓力即加速度分量成比例的電信號:④參考質(zhì)量由彈簧與殼體連接,放在線圈內(nèi)部,反映加速度分量大小的位移改變線圈的電感,從而輸出與加速度成正比的電信號。此外,尚有伺服類型的加速度計,其中引入一個反饋回路,以提高測量的精度。為了測出在平面或空間的加速度矢量,需要兩個或三個加速度計,各測量一個加速度分量。
加速度計由檢測質(zhì)量(也稱敏感質(zhì)量)、支承、電位器、彈簧、阻尼器和殼體組成。檢測質(zhì)量受支承的約束只能沿一條軸線移動,這個軸常稱為輸入軸或敏感軸。當儀表殼體隨著運載體沿敏感軸方向作加速運動時,根據(jù)牛頓定律,具有一定慣性的檢測質(zhì)量力圖保持其原來的運動狀態(tài)不變。它與殼體之間將產(chǎn)生相對運動,使彈簧變形,于是檢測質(zhì)量在彈簧力的作用下隨之加速運動。當彈簧力與檢測質(zhì)量加速運動時產(chǎn)生的慣性力相平衡時,檢測質(zhì)量與殼體之間便不再有相對運動,這時彈簧的變形反映被測加速度的大小。電位器作為位移傳感元件把加速度信號轉(zhuǎn)換為電信號,以供輸出。加速度計本質(zhì)上是一個一自由度的振蕩系統(tǒng),須采用阻尼器來改善系統(tǒng)的動態(tài)品質(zhì)。
高精度傾斜檢測系統(tǒng)在校準之后,傾斜精度一般可以優(yōu)于1°。使用市場領(lǐng)先的超低噪聲和高度穩(wěn)定的加速度計,例如ADXL354或ADXL355,通過對可觀測到的誤差源進行校準,其傾斜精度可以達到0.005°。2但是,只有在適當減輕應力的情況下才能達到這種精度水平。例如,傳感器承受的壓縮/拉應力可能導致其出現(xiàn)高達20 mg的偏移,使得傾斜誤差超過1°。
ADXL35x系列加速度計包含一個彈簧質(zhì)量系統(tǒng),這與許多其他的MEMS加速度計類似。質(zhì)量響應外部加速度(靜態(tài)加速度(如重力)或動態(tài)加速度(如速度變化))而移動,其物理位移通過傳導機制進行檢測。MEMS傳感器采用的最常見的傳導機制包括電容式、壓阻式、壓電式或磁性。ADXL355采用電容傳導機制,通過電容變化來檢測移動,而電容變化通過讀取電路可轉(zhuǎn)換為電壓或電流輸出。雖然ADXL355對硅芯片上的所有三軸傳感器都采用了電容傳導機制,但X/Y傳感器和Z傳感器采用了兩種完全不同的電容檢測架構(gòu)。X/Y傳感器均基于差分平面內(nèi)叉指,而Z傳感器是平面外平行板電容傳感器。
如果傳感器上存在壓縮應力或拉應力,MEMS芯片會翹曲。由于檢測質(zhì)量塊通過彈簧懸掛在襯底上方,所以不會和襯底一起翹曲,但質(zhì)量塊和襯底之間的間隙會發(fā)生變化。對于X/Y傳感器,由于平面內(nèi)位移對叉指電容變化的影響最大,所以間隙不在電容靈敏度這個方向,這是由邊緣電場的補償作用導致的。但是,對于Z傳感器,襯底和檢測質(zhì)量塊之間的間隙實際上是檢測間隙。所以,它會對Z傳感器產(chǎn)生直接影響,因為它有效改變了Z傳感器的檢測間隙。此外,Z傳感器位于芯片中央,只要芯片受到任何應力,該位置都會產(chǎn)生最大程度翹曲。
除了物理應力之外,由于在大多數(shù)應用中,z軸上的熱傳遞都不對稱,所以z軸傳感器上經(jīng)常存在溫度梯度。在典型應用中,傳感器焊接在印刷電路板(PCB)上,而且整個系統(tǒng)都在封裝內(nèi)。X和Y軸的熱傳遞主要通過封裝周邊的焊點來傳遞,并傳遞到對稱的PCB上。但是,在z方向,由于芯片頂部存在焊點和對流,所以熱傳遞通過底部傳導,熱量會通過空氣傳遞到封裝外。由于這種不匹配,z軸上會出現(xiàn)殘余的溫差梯度。與物理壓縮/拉應力一樣,這會使z軸上出現(xiàn)并非由加速度導致的偏移。
受環(huán)境應力影響的數(shù)據(jù)評述
ADXL354(模擬輸出)加速度計可以連接至任何模擬數(shù)據(jù)采集系統(tǒng)來實施數(shù)據(jù)分析,而ADXL355評估板經(jīng)過優(yōu)化,可直接放入客戶系統(tǒng)中,從而簡化了現(xiàn)有嵌入式系統(tǒng)的原型設(shè)計。為了闡明本文主旨,我們使用了小型評估板EVAL-ADXL35x。為了記錄和分析數(shù)據(jù),我們將EVAL-ADXL35x連接至SDP-K1微控制器板,并使用Mbed環(huán)境進行編程。Mbed是適用于ARM微控制器板的開源和免費開發(fā)環(huán)境,配有一個在線編譯器,可以幫助您快速構(gòu)建。SDP-K1板在連接至PC時,會顯示為外部驅(qū)動器。要對該板編程時,只需將編譯器生成的二進制文件拖放到SDP-K1驅(qū)動器中即可。
一旦Mbed系統(tǒng)通過UART記錄數(shù)據(jù),就形成了一個基本的測試環(huán)境,可以嘗試進行ADXL355實驗,并將輸出傳輸?shù)胶唵味丝?,用于記錄?shù)據(jù)和進一步分析。需要注意的是,無論加速度計的輸出數(shù)據(jù)速率是多少,Mbed代碼都以2 Hz的速率記錄寄存器。在Mbed中也可以采用更快的記錄速度,但本文不做闡述。
良好的初始數(shù)據(jù)集有助于確定基準性能,并驗證我們后續(xù)進行的大部分數(shù)據(jù)分析中可能出現(xiàn)的噪聲水平。使用具有吸盤裝置的PanaVise鉸接式虎鉗5,這樣將該設(shè)備粘附在玻璃表面時,就可以通過工作臺設(shè)置實現(xiàn)相當穩(wěn)定的工作表面。采用這種配置,ADXL355板(從側(cè)面固定)與實驗室工作臺一樣穩(wěn)定。更高級的電力用戶可能會注意到,安裝這種虎鉗存在傾翻風險,但這是一種簡單而經(jīng)濟的方法,可以根據(jù)重力改變方向。如圖2所示安裝ADXL355板之后,持續(xù)60秒采集一組數(shù)據(jù)進行首次分析。