摘要:簡要介紹了利用分立元器件搭構的反激式DC/DC變換的拓撲以及實際電路。給出了試驗結果,分析了該拓撲的特點及各項工作性能。該項工作為日后該拓撲的集成化打下了基礎。
關鍵詞:直流/直流;電流型控制;集成化
Research on Integration of Flyback DC/DC Power Supply
YE Jian-li, LI Ming-feng
Abstract:The topology for flyback DC/DC switching power supply using discrete components and devices are introduced, which is verified in practical circuit.The result of experiment is here presented, and the feathers of this topology as well as variety of performances are analysed. This work provides base for furture integration of the power supply.
Keywords:DC/DC; Current feedback control; Integration
1 引言
電源的集成化是電源產品發(fā)展的方向。在開關電源的應用中,PWM控制電路是電源設計的核心,PWM控制電路可以由分立元器件來實現,因而,可以設想把PWM及反饋控制和自保護電路集成到一個芯片上。在國外,這種控制芯片早就成為商品,如UC3842,TOPSwitch等。而在國內,該類產品幾乎是空白,因而,電源的集成化研究將成為一個發(fā)展趨勢。
由于反激變換器的電路拓撲簡單,輸出與輸入電氣隔離,能高效提供多組直流輸出,升降壓范圍寬,因此在中小功率場合得到廣泛應用。本文利用反激變換器的特點,設計了利用分立元器件搭構的驅動控制電路,驅動反激變換器,為日后的集成化作準備。
2 驅動控制電路拓撲
圖1中,V8為振蕩電路產生的振蕩脈沖,其占空比為50%,由該脈沖決定開關器件的工作頻率。V1為原邊電流采樣電阻上的壓降,V2為輸出電壓的反饋值,V3是用于驅動開關管的信號。V2經過PI調節(jié)器進行誤差放大后輸入到比較器的反向端,與輸入到比較器同向端的經過誤差放大后的V1值進行比較,從而決定V3的脈寬大小。邏輯電路產生的信號經過輸出級后用來驅動MOSFET的開通和關斷,該信號(V3)的占空比與輸出電壓的反饋值V2成反比,實現電壓反饋式的控制環(huán),同時,該信號的占空比還與輸入的直流電壓值成反比,以實現電路的前饋控制。V3信號由經過放大后的原邊電流的采樣電阻上的電壓值和經過PI調節(jié)器的輸出電壓的反饋值共同來控制。圖2為各個反饋信號的誤差放大值、振蕩脈沖V8以及MOSFET的驅動信號V3波形。圖2中1)為振蕩脈沖V8的波形,2)為驅動信號V3的波形,3)、4)為電壓反饋和電流反饋值經過誤差放大后的波形(V2和V1的波形)。
圖1 PWM邏輯電路及輸出電路
由圖2可知,當反饋電流的誤差放大值V1大于反饋電壓的誤差值V2時,比較器就輸出高電平,驅動信號變成低電平,使MOSFET管關斷,直到下一個振蕩脈沖到來,MOSFET管才開通,因而可以看出,該電路采用的是電流的峰值控制。
圖2 PWM波形圖
圖3為啟動電路圖。 [!--empirenews.page--]
圖3 啟動電路圖
該啟動電路由雙極性晶體管Q1,穩(wěn)壓二極管D1,D3和二極管D2以及電容C1構成。在電路啟動的初期,輸入的直流電源通過雙極性晶體管Q1給電容C1充電,使電路開始工作。等到反饋的電壓值Feedback比電路中的穩(wěn)壓二極管D1的穩(wěn)壓值大時,雙極性晶體管Q1被關斷,該電路停止工作。PWM比較器的工作電壓由Feedback信號提供。這種電路的優(yōu)點是可以有效地減小損耗,而很多國外產品的啟動電路是由大電阻和電容構成,因而在電阻上將會有一定的損耗。
在圖1的驅動控制電路中,我們還可以看到,該電路有逐周電流檢測功能。逐周的峰值漏極電流限制電路以原邊電流的采樣電阻作為檢測電阻。器件內部的PI調節(jié)器的輸出值設有+5V的電壓限制,而采樣電阻上的電壓值放大5倍后與PI調節(jié)器的輸出值進行比較,故設計電路時就可以精確地計算出電流峰值,通過選定采樣電阻值和原副邊的匝數比來進行電流限制。當MOSFET的漏極電流太大使采樣電阻上的壓降放大后超過+5V的閾值時,MOSFET就會被關斷,直到下一個時鐘周期開始。
3 動態(tài)性能試驗
1)負載變化時輸出電壓的動態(tài)特性
當負載變化時,輸出電壓也在瞬間變化,然后反饋到控制引腳,器件內部的控制電路就會做出相應的調整,改變MOSFET器件開關的占空比,以實現輸出電壓穩(wěn)定的目的。
圖4(a)是負載變小時輸出電壓波形的變化情況。負載變小,輸出電壓變大,導致電壓反饋的誤差放大值變小,脈寬調制器的輸出波形的占空比變小,使輸出電壓變小,最終使輸出電壓趨向于穩(wěn)定值。此時,輸出電壓的反饋值為+5V。
圖4(b)是負載變大時的輸出電壓波形。同理,可以分析出輸出電壓的變化過程。
圖4 負載變化時輸出電壓的動態(tài)特性圖
在同一個輸入電壓不同負載情況下MOSFET器件的uDS的波形如圖5所示。
圖5 負載變化時開關管的uds波形 [!--empirenews.page--]
圖5上半部分是負載為40Ω時的波形,圖5下半部分是負載為30Ω時的波形。由圖5可知,在不同負載下,MOSFET器件開關的占空比是不相同的,負載大則MOSFET器件的導通時間長。
2)輸入電壓變化時輸出電壓的動態(tài)特性
當輸入電壓發(fā)生變化時,輸出電壓也會在瞬間隨著發(fā)生變化,由于輸入電壓的變化直接導致輸入電流的變化,在電流采樣電阻上的壓降的上升斜率隨著變化,可以直接導致輸出占空比的改變,同時,輸出電壓的反饋環(huán)節(jié)同樣起著調節(jié)作用。圖6為輸入電壓變化時輸出電壓的變化情況。
圖6(a)為輸入電壓由200V減小到150V時的輸出電壓的波形。從圖中可以看出,經過短暫的時間調整后,輸出電壓重新趨向于穩(wěn)定值,并且輸出電壓的變化非常小。
圖6(b)為輸入電壓由150V變到200V時的輸出電壓波形。
圖6 輸入電壓變化時輸出電壓的動態(tài)特性
4 結語
本文在給出反激電路拓撲的基礎上,通過實際的分立元器件搭構實現該拓撲。給出多組試驗波形,以此分析了驅動控制電路的特點以及工作性能。試驗證明,這種電路控制方法簡潔,性能優(yōu)良。該電路不僅可以應用于反激式電路,也可以應用于正激式和其它DC/DC電路中。由于所有元器件由分立元器件搭構,這就為將來的集成化,以至最終研制芯片提供了基礎,驗證了可行性。