www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 數字電源
[導讀]電力線高速數據傳輸使電力線作為通信媒介成為現實,研究電力線通信是十分必要的。文章詳細介紹OFDM的原理以及TI的數字信號處理芯片TMS320VC5402,描述基于OFDM技術,采用16位定點DSP——TMS320V5402作為控制單元的配電網電力線數傳通信設備,最后給出其軟硬件設計原理及實現過程,并給出此設計的具體參數。

引 言
    隨著社會的進步和技術的發(fā)展,多媒體業(yè)務不斷增長,人們對網絡帶寬的要求也隨之增長。通信網正向著IP化、寬帶化方向發(fā)展。通信網由傳輸網、交換網和接入網三部分組成。目前,我國傳輸網已經基本實現數字化和光纖化;交換網也實現了程控化和數字化;而接入網仍然是通過雙絞線與局端相連,只能達到56 kb/s的傳輸速率,不能滿足人們對多媒體信息的迫切需求。對接入網進行大規(guī)模改造,以升級到FTTC(光纖到路邊)甚至FTTH(光纖到戶),需要高昂的成本,短期內難以實現。XDSL技術實現了電話線上數據的高速傳輸,但是大多數家庭電話線路不多,限制了可連接上網的電腦數,而且在各房間鋪設傳輸電纜極為不便。最為經濟有效而且方便的基礎設備就是電源線,把電源線作為傳輸介質,在家庭內部不必進行新的線路施工,成本低。電力線作為通信信道,幾乎不需要維護或維護量極小,而且可以靈活地實現即插即用。此外,由于不必交電話費,月租費便宜。
    電力線高速數據傳輸使電力線做為通信媒介已成為可能。鋪設有電力線的地方,通過電力線路傳輸各種互聯網的數據,就可以實現數據通信,連成局域網或接入互聯網。通過電源線路傳輸各種互聯網數據,可以大大推進互聯網的普及。此項技術還可以使家用電腦及電器結合為可以互相溝通的網絡,形成新型的智能化家電網,用戶在任何地方通過Internet實現家用電器的監(jiān)控和管理;可以直接實現電力抄表及電網自動化中遙信、遙測、遙控、遙調的各項功能,而不必另外鋪設通信信道。因此,研究電力
線通信是十分必要的。


1 OFDM基本原理
    正交頻分復用OFDM(Orthogonal Frequency Division Multiplexing)是一種正交多載波調制MCM方式。在傳統(tǒng)的數字通信系統(tǒng)中,符號序列調制在一個載波上進行串行傳輸,每個符號的頻率可以占有信道的全部可用帶寬。OFDM是一種并行數據傳輸系統(tǒng),采用頻率上等間隔的N個子載波構成。它們分別調制一路獨立的數據信息,調制之后N個子載波的信號相加同時發(fā)送。因此,每個符號的頻譜只占用信道全部帶寬的一部分。在OFDM系統(tǒng)中,通過選擇載波間隔,使這些子載波在整個符號周期上保持頻譜的正交特性,各子載波上的信號在頻譜上互相重疊,而接收端利用載波之間的正交特性,可以無失真地恢復發(fā)送信息,從而提高系統(tǒng)的頻譜利用率。圖1給出了正交頻分復用OFDM的基本原理??紤]一個周期內傳送的符號序列(do,d1,…,dn-1)每個符號di是經過基帶調制后復信號di=ai+jbi,串行符號序列的間隔為△t=l/fs,其中fs是系統(tǒng)的符號傳輸速率。串并轉換之后,它們分別調制N個子載波(fo,f1,…,fn-1),這N個子載波頻分復用整個信道帶寬,相鄰子載波之間的頻率間隔為1/T,符號周期T從△t增加到N△t。合成的傳輸信號D(t)可以用其低通復包絡D(t)表示。

   
    其中ωi=-2π·△f·i,△f=1/T=1/N△t。在符號周期[O,T]內,傳輸的信號為D(t)=Re{D(t)exp(j2πfot)},0≤t≤T。
若以符號傳輸速率fs為采樣速率對D(t)進行采樣,在一個周期之內,共有N個采樣值。令t=m△t,采樣序列D(m)可以用符號序列(do,d1,…,dn-1)的離散付氏逆變換表示。即

   
    因此,OFDM系統(tǒng)的調制和解調過程等效于離散付氏逆變換和離散付氏變換處理。其核心技術是離散付氏變換,若采用數字信號處理(DSP)技術和FFT快速算法,無需束狀濾波器組,實現比較簡單。


2 電力線數傳設備硬件構成
    電力線數據傳輸設備的硬件框圖如圖2所示。

2. 1 數字信號處理單元TMS320VC5402
    用數字信號處理的手段實現MODEM需要極高的運算能力和極高的運算速度,在高速DSP出現之前,數字信號處理只能采用普通的微處理器。由于速度的限制,所實現的MODEM最高速度一般在2400b/s。自20世紀70年代末,Intel公司推出第一代DSP芯片Intel 2920以來,近20年來涌現出一大批高速DSP芯片,從而使話帶高速DSP MCODEM的實現成為可能。
    TMS320系列性價比高,國內現有開發(fā)手段齊全,自TI公司20世紀80年代初第一代產品TMS32010問世以來,正以每2年更新一代的速度,相繼推出TMS32020、TMS320C25、TMS320C30、TMS320C40以及第五代產品TMS320C54X。
    根據OFDM調制解調器實現所需要的信號處理能力,本文選擇以TMS320VC5402作為數據泵完成FFT等各種算法,充分利用其軟件、硬件資源,實現具有高性價比的OFDM高速電力線數傳設備。
    TMS320C54X是TI公司針對通信應用推出的中高檔16位定點DSP系列器件。該系列器件功能強大、靈活,較之前幾代DSP,具有以下突出優(yōu)點:
    ◇速度更快(40~100 MIPS);
    ◇指令集更為豐富;
    ◇更多的尋址方式選擇;
    ◇2個40位的累加器;
    ◇硬件堆棧指針;
    ◇支持塊重復和環(huán)型緩沖區(qū)管理。
2. 2高頻信號處理單元
    主要實現對高頻信號的放大、高頻開關和線路濾波等功能,并最終經小型加工結合設備送往配電線路。信號的放大包括發(fā)送方向的可控增益放大(前向功率控制),接收方向AGC的低噪聲放大部分。其中高頻開關完成收發(fā)高頻信號的轉換,實現雙工通信。同時使收發(fā)共用一個線路濾波器,這樣可以節(jié)省系統(tǒng)成本。
2.3 RS一232接口單元
    用戶數據接口采用RS一232標準串行口。串口的數據中斷采用邊沿觸發(fā)中斷,串口中斷程序完成用戶數據的發(fā)送與接收。將接收到的用戶數據暫存到CPU的發(fā)送緩沖區(qū)中,等到滿一個突發(fā)包時就發(fā)送到DSP進行處理。

3 參數設計
3.1保護時間的選擇

    根據OFDM信號設計準則,首先選擇適當的保護時間,△=20μs,這能夠充分滿足在電力系統(tǒng)環(huán)境下,OFDM信號消除多徑時延擴展的目的。
3.2符號周期的選擇
    T>200 μs,相應子信道間隔,f<5kHz,這樣在25kHz帶寬內至少要劃分出5個子信道。另外子信道數不能太多,增加子信道數雖然可以提高頻譜傳輸效率,但是DSP器件的復雜度也將增加,成本上升,同時還將受到信道時間選擇性衰落的嚴重影響。因此,考慮在25kHz的帶寬內采用7個子信道。
3. 3子信道數的計算

    子信道間隔:

    各子信道的符號周期:T=250μs

    考慮保護時間:△=20μs,則有Ts=T+△=270μs
    各子信道實際的符號率:
    總的比特率:3.71kbps×25子信道×2b/symbol=185.5kb/s
    系統(tǒng)的頻譜效率:β=185.5kbps/100kHz=1.855bps/Hz<2bps/Hz
    可以看出,這時系統(tǒng)已經具有較高的頻譜效率。25路話音信號總的速率與經串并變換和4PSK映射后的各子信道上有用信息的符號率相比,每個子信道還可以插入冗余信息用于同步、載波參數、幀保護和用戶信息等。需要指出的是:
    ①由于OFDM信號時頻正交性的限制條件,在此設計中盡管采用了25個子載波并行傳輸也只能傳25路語音。如果要傳8路語音,經串并轉換和16QAM映射后,各個子信道上有用信息的符號率為1.855bps/Hz,最多還可以插入的冗余信息為O.145bps/Hz,在實際傳輸中這是很難保證的傳輸質量的,因此該設計相對于M-16QAM采用4個子載波傳輸6路話音并不矛盾。
    ②在此設計中,為冗余信息預留了較多的位,其冗余信息與有用信息的比值為0.59,大于iDEN系統(tǒng)的0.44。這是考慮到OFDM信號對于載波相位偏差和定時偏差都較為敏感,這樣就可以插入較多的參考信號以快速實現載波相位的鎖定、跟蹤及位同步;另一方面對引導符號間隔的選擇也較為靈活,在設計中選擇引導符號間隔L=10。  
    ③OFDM信號調制解調的核心是DFT/IDFT算法。目前,普遍采用DSP芯片完成DFT/IDFT,因此有必要對設計所需的DSP性能進行估計。根據設計要求,至少要能在250μs內完成32個復數點的FFT運算。我們知道,N個復數點的FFT共需要2Nlog2 N次實數乘法和3Nl0g2 N次實數加法。假設實數乘法和實數加法都是單周期指令,以32個復數點為例,這樣共需要800個指令周期,即20μs,因此采用TMS320VC5402能夠滿足設計要求(TMS320VC5402的單指令周期為10ns)。
    綜上所述,OFDM數傳設備參數如表l所列。

4 軟件構成
    上面確定了OFDM數傳設備的主要參數及算法,下面說明用TMS320VC5402實現的軟件設計及流程,如圖3所示。

4. 1 調制部分的軟件設計
    此程序作為子程序被調用之前,要發(fā)送的數據已經被裝入數據存儲器,并將數據區(qū)的首地址及長度作為入口參數傳遞給子程序。程序執(zhí)行時,首先清發(fā)送存儲器,然后配置AD9708的采樣速率,之后允許串行口發(fā)送中斷產生,使中斷服務程序自動依次讀取發(fā)送存儲器中的內容,送入AD9708變換成模擬信號。之后程序從數據存儲器讀取一幀數據,經編碼,并行放入IFFT工作區(qū)的相應位置,插入導頻符號并將不用的點補零。隨后進行IFFT,IFFT算法采用常用的時域抽點算法DIT,蝶形運算所需的WN可查N=512字的定點三角函數表得到。由于TMS320VC5402的數值計算為16位字長定點運算方式,所以IFFT采用成組定點法,既提高了運算精度又保證了運算速度。然后對IFFT變換后的結果擴展加窗,并將本幀信號的前擴展部分同上幀信號的后擴展部分相加,加窗所需窗函數可查表得到。窗函數存放在窗函數表中,是事先利用C語言浮點運算并將結果轉換為定點數存放在表中的。
    經實測,從讀取串行數據到加窗工作完成最多占用75個抽樣周期(75×125μs)的時間,而發(fā)送一幀信號需512+32=544個抽樣周期(544×125μs)。這說明C5402的運算速度足夠滿足需要。
    當上一幀信號發(fā)送完畢,程序立即將以處理好的本幀信號送入發(fā)送存儲器繼續(xù)發(fā)送,并通過入口參數判斷數據是否發(fā)送完畢。
4. 2 解調部分的軟件設計
    用TMS320VC5402實現的流程分同步捕捉及解調兩個階段。同步捕捉階段執(zhí)行時,首先清接收存儲器,配置AD9057的采樣速率,然后開串行口接收中斷,使接收中斷服務程序接收來自AD9057的采樣數據并依次自動存入接收存儲器。
    每得到一個新的樣點,程序先用DFT的遞推算法解調出25路導頻符號,并對導頻均衡。之后分別同參考導頻符號矢量600h+j600h進行點積,這里用導頻符號矢量的實部與虛部的和代替點積,即可反映相關函數的規(guī)律,以簡化運算。求得25路導頻與參考導頻的相關值后暫時保存,并分別與前一個樣點所保存的各導頻相關值比較(相減),用一個字節(jié)保存比較結果的正負號(每路導頻占1bit)。在處理前一個樣點的過程中,也用一個字節(jié)保存它同其前一樣點的導頻相關值比較的正負號。對這兩個字節(jié)進行簡單的邏輯運算,即可判斷出各導頻是否在前一個樣點處出現峰值。倘若25路導頻中有20個以上的導頻同時出現峰值,則認為該樣點以前的N=512個樣點即為捕捉到的一幀信號,程序進入解調階段;否則等待接收新的采樣點繼續(xù)進行同步捕捉。
    解調階段首先對捕捉到的幀信號進行實信號的FFT變換,仍然采用成組定點法,之后進行均衡。然后利用導頻算出本地抽樣時鐘的延遲τ,在計算中應盡量避免出現除法,可將常數分母取倒數后提前算出,作為乘法的系數。為了保證其后二維AGC的精度,計算中τ精確到O.1μs。接下來根據τ調整抽樣時鐘,程序將調整量通知串行口發(fā)送中斷服務程序后,繼續(xù)執(zhí)行二維AGC,而由中斷服務程序在每次中斷響應時間發(fā)布命令,每次可以調整下一采樣時刻提前(或落后)1μs。
    二維AGC分兩步進行。首先根據τ對均衡后的調制矢量進行相位校正,這里需要利用FFT變換所使用的512字的三角函數表,用一個指針指向三角函數表的表頭,根據τ及三角函數表角度間隔算出多少路子信道才需要將指針下移一格,通過這種查表的方法可以簡潔地確定各子信道的校正量。經相位校正后,即可利用導頻進行幅度校正。
    接下來經判決,并/串變換及解碼即可解調出本幀數據。然后對均衡器的權值采用LMS算法進行調節(jié)。程序通過對這部分信號進行簡單的幅值門限分析,很容易判斷出是否收到了信號。若有則繼續(xù)接收;否則結束返回。


結語
    本文介紹了OFDM技術的基本原理,敘述了基于OFDM技術的電力線數傳通信設備的軟硬件設計,給出了此設計的具體參數。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

柏林2025年9月9日 /美通社/ -- 2025年9月5日,納斯達克上市公司優(yōu)克聯集團(NASDAQ: UCL)旗下全球互聯品牌GlocalMe,正式亮相柏林國際消費電子展(IFA 2025),重磅推出融合企...

關鍵字: LOCAL LM BSP 移動網絡

深圳2025年9月9日 /美通社/ -- PART 01活動背景 當技術的鋒芒刺穿行業(yè)壁壘,萬物互聯的生態(tài)正重塑產業(yè)疆域。2025年,物聯網產業(yè)邁入?"破界創(chuàng)造"與"共生進化"?的裂變時代——AI大模型消融感知邊界,...

關鍵字: BSP 模型 微信 AIOT

"出海無界 商機無限"助力企業(yè)構建全球競爭力 深圳2025年9月9日 /美通社/ -- 2025年8月28日, 由領先商業(yè)管理媒體世界經理人攜手環(huán)球資源聯合主辦、深圳?前海出海e站通協辦的...

關鍵字: 解碼 供應鏈 AI BSP

柏林2025年9月9日 /美通社/ -- 柏林當地時間9月6日,在2025德國柏林國際電子消費品展覽會(International Funkausstellung...

關鍵字: 掃地機器人 耳機 PEN BSP

武漢2025年9月9日 /美通社/ -- 7月24日,2025慧聰跨業(yè)品牌巡展——湖北?武漢站在武漢中南花園酒店隆重舉辦!本次巡展由慧聰安防網、慧聰物聯網、慧聰音響燈光網、慧聰LED屏網、慧聰教育網聯合主辦,吸引了安防、...

關鍵字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移遠通信宣布,其自研藍牙協議棧DynaBlue率先通過藍牙技術聯盟(SIG)BQB 6.1標準認證。作為移遠深耕短距離通信...

關鍵字: 藍牙協議棧 移遠通信 COM BSP

上海2025年9月9日 /美通社/ -- 為全面落實黨中央、國務院和上海市委、市政府關于加快發(fā)展人力資源服務業(yè)的決策部署,更好發(fā)揮人力資源服務業(yè)賦能百業(yè)作用,8月29日,以"AI智領 HR智鏈 靜候你來&quo...

關鍵字: 智能體 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付與一汽出行達成合作,為其自主研發(fā)的"旗馭車管"車輛運營管理平臺提供全流程支付通道及技術支持。此次合作不僅提升了平臺對百余家企業(yè)客戶的運營管理效率...

關鍵字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制藥(PharmaEngine, Inc.)發(fā)現的新一代PRMT5抑制劑PEP0...

關鍵字: 泰科 AI MT BSP

深圳2025年9月7日 /美通社/ -- 近日,特發(fā)信息順利通過權威認證機構BSI的嚴格審核,獲得由BSI頒發(fā)的ISO 37301:2021及GB/T 35770-2022合規(guī)管理體系認證證書,成為光纖光纜、配線網絡設備...

關鍵字: ISO SI 通信設備 光纖光纜
關閉