熱拔插系統(tǒng)中的電源緩啟動設計
通常來說電路板上使用過多的大容量電容對于濾除高頻干擾并沒有什么幫助,特別是使用高頻開關電源供電時。另一個問題是,大容量電容過多,增加了上電及熱插拔電路板時對電源的沖擊,容易引起如電源電壓下跌、電路板接插件打火、電路板內電壓上升慢等問題。
1、熱拔插系統(tǒng)必須使用電源緩啟動設計
熱拔插系統(tǒng)在單板插入瞬間,單板上的電容開始充電。因為電容兩端的電壓不能突變,會導致整個系統(tǒng)的電壓瞬間跌落。同時因為電源阻抗很低,充電電流會非常大,快速的充電會對系統(tǒng)中的電容產生沖擊,易導致鉭電容失效。如果系統(tǒng)中采用保險絲進行過流保護, 瞬態(tài)電流有可能導致保險絲熔斷, 而選擇大電流的保險絲會使得在系統(tǒng)電流異常時可能不熔斷,起不到保護作用。所以,在熱拔插系統(tǒng)中電源必須采用緩啟動設計,限制啟動電流,避免瞬態(tài)電流過大對系統(tǒng)工作和器件可靠性產生影響。
LDO
1、在壓差較大或者電流較大的降壓電源設計中,建議采用開關電源,避免使用 LDO
采用線性電源(包括 LDO)可以得到較低的噪聲,而且因為使用簡單,成本低,所以在單板上應用較多。FPGA 內核電源、某些電路板上射頻時鐘部分的電源等都使用線性電源從更高電壓的電源上調整得到。LDO必須計算熱耗并滿足降額規(guī)范
2、LDO 輸出端濾波電容選取時注意參照手冊要求的最小電容、電容的 ESR/ESL 等要求確保電路穩(wěn)定。推薦采用多個等值電容并聯的方式,增加可靠性以及提高性能
LDO 輸出電容為負載的變化提供瞬態(tài)電流,同時因為輸出電容處于電壓反饋調節(jié)回路之中,在部分 LDO 中,對該電容容量有要求以確保調節(jié)環(huán)路穩(wěn)定。該電容容量不滿足要求,LDO 可能發(fā)生振蕩導致輸出電壓存在較大紋波。
多個電容并聯,以及對大容量電解電容并聯小容量的陶瓷電容,有利于減少 ESR 和 ESL,提高電路的高頻性能,但是對于某些線性穩(wěn)壓電源,輸出端電容的 ESR 太低,也可能會誘發(fā)環(huán)路穩(wěn)定裕量下降甚至環(huán)路不穩(wěn)定。
濾波電容
1、 電源濾波可采用 RC 、LC 、π 型濾波。電源濾波建議優(yōu)選磁珠,然后才是電感。同時電阻、電感和磁珠必須考慮其電阻產生的壓降
插:電感和磁珠比較
2、 大容量電容應并聯小容量陶瓷貼片電容使用
大容量電容一般為電解電容,其體積較大,引腳較長,經常為卷繞式結構(鉭電容為燒結的碳粉和二氧化錳) 。這些電容的等效串聯電感較大,導致這些電容的高頻特性較差,諧振頻率大約在幾百 KHz到幾 MHz 之間(參見 Sanyo 公司 OSCON 器件手冊和 AVX 公司鉭電容器件手冊) 。小容量的陶瓷貼片電容具有低的 ESL 和良好的頻率特性,其諧振點一般能夠到達數十至數百 MHz(參見參考文獻《High-speed Digital Design》以及 AVX 等公司陶瓷電容器件手冊) ,可以用于給高頻信號提供低阻抗的回流路徑,濾除信號上的高頻干擾成分。因此,在應用大容量電容(電解電容)時,應在電容上并聯小容量瓷片電容使用。
大容量電容一般為電解電容,其體積較大,引腳較長,經常為卷繞式結構(鉭電容為燒結的碳粉和二氧化錳) 。這些電容的等效串聯電感較大,導致這些電容的高頻特性較差,諧振頻率大約在幾百 KHz到幾 MHz 之間(參見 Sanyo 公司 OSCON 器件手冊和 AVX 公司鉭電容器件手冊) 。小容量的陶瓷貼片電容具有低的 ESL 和良好的頻率特性,其諧振點一般能夠到達數十至數百 MHz(參見參考文獻《High-speed Digital Design》以及 AVX 等公司陶瓷電容器件手冊) ,可以用于給高頻信號提供低阻抗的回流路徑,濾除信號上的高頻干擾成分。因此,在應用大容量電容(電解電容)時,應在電容上并聯小容量瓷片電容使用。
尖峰電流的抑制方法:
1、在電路板布線上采取措施,使信號線的雜散電容降到最小;
2、 另一種方法是設法降低供電電源的內阻,使尖峰電流不至于引起過大的電源電壓波動;
3、 通常的作法是使用去耦電容來濾波,一般是在電路板的電源入口處放
一個1uF~10uF的去耦電容,濾除低頻噪聲;在電路板內的每一個有源器件的電源和地之間放置一個0.01uF~0.1uF的去耦電容(高頻濾波電容),用于濾除高頻噪聲。濾波的目的是要濾除疊加在電源上的交流干擾,但并不是使用的電容容量越大越好,因為實際的電容并不是理想電容,不具備理想電容的所有特性。
去耦電容的選取可按C=1/F計算,其中F為電路頻率,即10MHz取0.1uF,100MHz取0.01uF。一般取0.1~0.01uF均可。
放置在有源器件傍的高頻濾波電容的作用有兩個,其一是濾除沿電源傳導過來的高頻干擾,其二是及時補充器件高速工作時所需的尖峰電流。所以電容的放置位置是需要考慮的。
實際的電容由于存在寄生參數,可等效為串聯在電容上的電阻和電感,將其稱為等效串聯電阻(ESR)和等效串聯電感(ESL)。這樣,實際的電容就是一個串聯諧振電路,其諧振頻率為:
實際的電容在低于Fr的頻率呈現容性,而在高于Fr的頻率上則呈現感性,所以電容更象是一個帶阻濾波器。
10uF的電解電容由于其ESL較大,Fr小于1MHz,對于50Hz這樣的低頻噪聲有較好的濾波效果,對上百兆的高頻開關噪聲則沒有什么作用。
電容的ESR和ESL是由電容的結構和所用的介質決定的,而不是電容量。通過使用更大容量的電容并不能提高抑制高頻干擾的能力,同類型的電容,在低于Fr的頻率下,大容量的比小容量的阻抗小,但如果頻率高于Fr,ESL決定了兩者的阻抗不會有什么區(qū)別。
電路板上使用過多的大容量電容對于濾除高頻干擾并沒有什么幫助,特別是使用高頻開關電源供電時。另一個問題是,大容量電容過多,增加了上電及熱插拔電路板時對電源的沖擊,容易引起如電源電壓下跌、電路板接插件打火、電路板內電壓上升慢等問題。
1.電感和磁珠的對比
電感和磁珠在外形和功能上有很多相似之處,而且在很多場合,磁珠和電感能相互替代,但是兩者并不能完全等同。
兩者的區(qū)別:
(1)電感和磁珠雖然都可以濾波,但是機理是不一樣的。電感濾波是將電能轉換為磁能,磁能通過兩種方式影響電路:一種方式是重新換回電能,表現為噪聲;一種方式是向外輻射,表現為EMI(Electro-Magnetic Interference)電磁干擾。而磁珠是講電能轉換為熱能,不會對電路產生二次干擾。
(2)電感在低頻段濾波性能較好,但是在50MHz以上的濾波性能較差;磁珠利用其電阻能充分地吸收高頻噪聲,并將之轉換為熱能以達到徹底消除高頻噪聲的目的。
(3)從EMC(Electro Magnetic Compatibility)電磁兼容的層面說,由于磁珠能將高頻噪聲轉換為熱能,因此具有非常好的抗輻射功能,是常用的抗EMI器件,常應用于用戶接口信號線濾波、單板上的高速時鐘器件的電源濾波等。
(4)電感和電容構成低通濾波器時,由于電感和電容都是儲能器件,因此兩者的配合可能產生自激;磁珠是耗能器件,與電容協同工作時,不會產生自激。
(5)電源用電感的額定電流相對較大,因此,電感常用于需要大電流的 電源電路上,如用于電源模塊濾波;而磁珠一般常用于芯片級電源濾波