人臉技術(shù)基本概念介紹
掃描二維碼
隨時(shí)隨地手機(jī)看文章
“人臉檢測(cè)(Face DetecTIon)”是檢測(cè)出圖像中人臉?biāo)谖恢玫囊豁?xiàng)技術(shù)。
人臉檢測(cè)算法的輸入是一張圖片,輸出是人臉框坐標(biāo)序列(0個(gè)人臉框或1個(gè)人臉框或多個(gè)人臉框)。一般情況下,輸出的人臉坐標(biāo)框?yàn)橐粋€(gè)正朝上的正方形,但也有一些人臉檢測(cè)技術(shù)輸出的是正朝上的矩形,或者是帶旋轉(zhuǎn)方向的矩形。
常見的人臉檢測(cè)算法基本是一個(gè)“掃描”加“判別”的過程,即算法在圖像范圍內(nèi)掃描,再逐個(gè)判定候選區(qū)域是否是人臉的過程。因此人臉檢測(cè)算法的計(jì)算速度會(huì)跟圖像尺寸、圖像內(nèi)容相關(guān)。開發(fā)過程中,我們可以通過設(shè)置“輸入圖像尺寸”、或“最小臉尺寸限制”、或“人臉數(shù)量上限”的方式來加速算法。
圖1、人臉檢測(cè)結(jié)果舉例(綠色框?yàn)槿四槞z測(cè)結(jié)果)
2. 人臉配準(zhǔn)“人臉配準(zhǔn)(Face Alignment)”是定位出人臉上五官關(guān)鍵點(diǎn)坐標(biāo)的一項(xiàng)技術(shù)。
人臉配準(zhǔn)算法的輸入是“一張人臉圖片”加“人臉坐標(biāo)框”,輸出五官關(guān)鍵點(diǎn)的坐標(biāo)序列。五官關(guān)鍵點(diǎn)的數(shù)量是預(yù)先設(shè)定好的一個(gè)固定數(shù)值,可以根據(jù)不同的語(yǔ)義來定義(常見的有5點(diǎn)、68點(diǎn)、90點(diǎn)等等)。
當(dāng)前效果的較好的一些人臉配準(zhǔn)技術(shù),基本通過深度學(xué)習(xí)框架實(shí)現(xiàn),這些方法都是基于人臉檢測(cè)的坐標(biāo)框,按某種事先設(shè)定規(guī)則將人臉區(qū)域扣取出來,縮放的固定尺寸,然后進(jìn)行關(guān)鍵點(diǎn)位置的計(jì)算。因此,若不計(jì)入圖像縮放過程的耗時(shí),人臉配準(zhǔn)算法是可以計(jì)算量固定的過程。另外,相對(duì)于人臉檢測(cè),或者是后面將提到的人臉提特征過程,人臉配準(zhǔn)算法的計(jì)算耗時(shí)都要少很多。
圖2、人臉配準(zhǔn)結(jié)果舉例(右圖中的綠色點(diǎn)位人臉配準(zhǔn)結(jié)果)
3. 人臉屬性識(shí)別“人臉屬性識(shí)別(Face Attribute)”是識(shí)別出人臉的性別、年齡、姿態(tài)、表情等屬性值的一項(xiàng)技術(shù)。
一般的人臉屬性識(shí)別算法的輸入是“一張人臉圖”和“人臉五官關(guān)鍵點(diǎn)坐標(biāo)”,輸出是人臉相應(yīng)的屬性值。人臉屬性識(shí)別算法一般會(huì)根據(jù)人臉五官關(guān)鍵點(diǎn)坐標(biāo)將人臉對(duì)齊(旋轉(zhuǎn)、縮放、扣取等操作后,將人臉調(diào)整到預(yù)定的大小和形態(tài)),然后進(jìn)行屬性分析。
常規(guī)的人臉屬性識(shí)別算法識(shí)別每一個(gè)人臉屬性時(shí)都是一個(gè)獨(dú)立的過程,即人臉屬性識(shí)別只是對(duì)一類算法的統(tǒng)稱,性別識(shí)別、年齡估計(jì)、姿態(tài)估計(jì)、表情識(shí)別都是相互獨(dú)立的算法。但最新的一些基于深度學(xué)習(xí)的人臉屬性識(shí)別也具有一個(gè)算法同時(shí)輸入性別、年齡、姿態(tài)等屬性值的能力。
圖3、人臉屬性識(shí)別過程(最右側(cè)文字為屬性識(shí)別結(jié)果)
4. 人臉提特征“人臉提特征(Face Feature ExtracTIon)”是將一張人臉圖像轉(zhuǎn)化為一串固定長(zhǎng)度的數(shù)值的過程。這個(gè)數(shù)值串被稱為“人臉特征(Face Feature)”,具有表征這個(gè)人臉特點(diǎn)的能力。
人臉提特征過程的輸入也是 “一張人臉圖”和“人臉五官關(guān)鍵點(diǎn)坐標(biāo)”,輸出是人臉相應(yīng)的一個(gè)數(shù)值串(特征)。人臉提特征算法都會(huì)根據(jù)人臉五官關(guān)鍵點(diǎn)坐標(biāo)將人臉對(duì)齊預(yù)定模式,然后計(jì)算特征。
近幾年來,深度學(xué)習(xí)方法基本統(tǒng)治了人臉提特征算法,這些算法都是固定時(shí)長(zhǎng)的算法。早前的人臉提特征模型都較大,速度慢,僅使用于后臺(tái)服務(wù)。但最新的一些研究,可以在基本保證算法效果的前提下,將模型大小和運(yùn)算速度優(yōu)化到移動(dòng)端可用的狀態(tài)。
圖4、人臉提特征過程(最右側(cè)數(shù)值串為“人臉特征”)
5. 人臉比對(duì)(人臉驗(yàn)證、人臉識(shí)別、人臉檢索、人臉聚類)“人臉比對(duì)(Face Compare)”是衡量?jī)蓚€(gè)人臉之間相似度的算法