在現(xiàn)代工業(yè)生產(chǎn)中,壓縮空氣被廣泛應用于各個領域,從食品加工到電子制造,從制藥行業(yè)到汽車生產(chǎn)等。確保壓縮空氣的純凈度至關重要,因為揮發(fā)性有機化合物(VOCs)等污染物會損害系統(tǒng)效率、產(chǎn)品質量及工作場所安全。在空氣質量監(jiān)測技術中,光離子化檢測(PID)以其對痕量 ppb 級 VOC 測量的高度敏感性而脫穎而出,成為提高壓縮空氣質量的有力技術手段。
模塊化設計作為一種將系統(tǒng)拆分為獨立、可復用組件的方法,能夠在低代碼平臺中實現(xiàn)功能的靈活組合,并最大限度地提升系統(tǒng)性能。本文將探討如何通過模塊化設計,使得低代碼平臺既能快速適應變化,又能保持高效穩(wěn)定的運行。
在當今電子設備廣泛普及的時代,開關穩(wěn)壓電源作為核心供電部件,其性能優(yōu)劣直接影響著電子設備的整體表現(xiàn)。雙環(huán)反激開關穩(wěn)壓電源以其獨特的電路拓撲和良好的電氣隔離特性,在中小功率應用領域占據(jù)重要地位。然而,隨著對電源精度、穩(wěn)定性及動態(tài)響應要求的不斷提高,傳統(tǒng)控制電路逐漸暴露出一些局限性,開發(fā)新型控制電路迫在眉睫。
開關電源憑借其體積小、重量輕、效率高的顯著優(yōu)勢,在現(xiàn)代電子設備中廣泛應用。然而,由于其工作在高頻開關狀態(tài),不可避免地會產(chǎn)生電磁干擾(EMI)。這種干擾不僅會影響自身性能,還可能對周圍其他電子設備的正常運行造成嚴重干擾。因此,有效抑制開關電源的電磁干擾,對于保障電子設備的穩(wěn)定運行和提高系統(tǒng)的電磁兼容性至關重要。
物聯(lián)網(wǎng)(M2M)設備大規(guī)模部署,數(shù)據(jù)安全與設備資源受限的矛盾日益突出。橢圓曲線密碼(ECC)與對稱加密的混合方案,通過結合ECC的高強度密鑰交換與對稱加密的高效數(shù)據(jù)處理能力,為M2M設備構建起低開銷、高安全性的加密體系。本文從算法原理、工程實現(xiàn)與場景適配三方面,解析這一混合方案的核心技術與應用價值。
工業(yè)4.0與物聯(lián)網(wǎng)深度融合,設備預測性維護已成為制造業(yè)轉型升級的核心驅動力。傳統(tǒng)定期維護模式導致30%以上的非計劃停機與15%的過度維護,而基于機器學習的故障預警系統(tǒng)可將設備綜合效率(OEE)提升20%-30%。本文聚焦M2M(機器對機器)系統(tǒng)架構,系統(tǒng)闡述基于LSTM(長短期記憶網(wǎng)絡)神經(jīng)網(wǎng)絡的設備故障預警模型開發(fā)流程,從數(shù)據(jù)采集、特征工程到模型優(yōu)化進行全鏈條解析。
物聯(lián)網(wǎng)、工業(yè)4.0與智能終端的快速發(fā)展,多模態(tài)傳感器融合技術正成為感知層創(chuàng)新的核心驅動力。通過集成溫度、濕度、加速度、壓力、生物信號等多類傳感器,系統(tǒng)可獲取更豐富的環(huán)境或生理信息,但這也對硬件架構的集成度、功耗與信號完整性提出了嚴苛挑戰(zhàn)。模擬前端(Analog Front End, AFE)作為連接傳感器與數(shù)字處理單元的關鍵橋梁,其與微控制器(MCU)的協(xié)同設計直接決定了系統(tǒng)的性能上限。本文從硬件架構、信號鏈優(yōu)化、低功耗策略及典型應用場景四個維度,深入解析多模態(tài)傳感器融合的集成設計方法。
AC-DC電源模塊的電磁干擾(EMI)問題始終是硬件工程師面臨的挑戰(zhàn),其核心矛盾源于高頻開關動作與電磁兼容要求的沖突。在開關電源中,差模噪聲與共模噪聲如同硬幣的兩面,既存在本質差異又相互關聯(lián)。差模噪聲的產(chǎn)生與功率級電流路徑直接相關,當主開關管導通時,輸入電容快速充放電形成脈沖電流,這種電流在正負導線間流動形成差模干擾。而共模噪聲則源于電壓突變引發(fā)的寄生電容耦合,例如變壓器繞組間或開關管與散熱片間的分布電容,使高頻噪聲通過地線回路形成共模電壓。兩種噪聲的傳播路徑截然不同:差模噪聲沿電源線向外輻射,共模噪聲則通過空間耦合或接地系統(tǒng)傳播。
在消費電子與LED照明領域,電源設計的微型化與成本優(yōu)化已成為行業(yè)發(fā)展的核心命題。初級側控制(Primary Side Regulation, PSR)技術憑借其獨特的電路架構,通過消除傳統(tǒng)光耦合器與TL431等元件,在小功率電源領域展現(xiàn)出顯著優(yōu)勢。本文將深入解析PSR技術實現(xiàn)恒壓恒流(CVCC)的原理,并探討其精度優(yōu)化策略。
在電力電子設備中,低電壓啟動能力是衡量系統(tǒng)可靠性的核心指標之一。尤其在電網(wǎng)波動頻繁的工業(yè)場景或偏遠地區(qū),電源設備需在85VAC至265VAC的寬輸入范圍內(nèi)穩(wěn)定啟動。這一需求對輸入電容容量設計、功率因數(shù)校正(PFC)控制策略以及系統(tǒng)級優(yōu)化提出了嚴苛挑戰(zhàn)。本文將從電容容量計算、PFC啟動機制及動態(tài)響應優(yōu)化三個維度,解析低電壓啟動設計的關鍵技術路徑。