電磁干擾(EMI)超標:醫(yī)療設備的電磁干擾可能對其他設備或系統(tǒng)造成干擾,導致性能下降或誤操作。這通常是由于設備設計或制造過程中的不當措施引起的。
EMI測試整改是在電子產品研發(fā)和生產過程中,針對電磁干擾問題進行的專項改進工作。通過整改,可以有效降低產品在工作時產生的電磁輻射,減少對周邊設備的干擾,提高產品的電磁兼容性。同時,EMI測試整改也是產品通過國內外電磁兼容性認證的必要條件,對于產品進入市場具有重要意義。
環(huán)境應力篩選試驗(ESS試驗)是考核產品整機質量的常用手段。在ESS試驗中,隨機振動的應力旨在考核產品在結構、裝配、應力等方面的缺陷。體積較大的電容,在焊接后,如果沒有施加單獨的處理措施,在振動試驗時容易發(fā)生引腳斷裂的問題。這個實驗模擬的是運輸振動、運行振動、沖擊碰撞跌落的應力條件。
PCB設計在EMI抑制中起著關鍵作用。合理的布局布線能夠有效減少信號的電磁輻射和相互干擾。首先,應將功率電路和控制電路進行物理隔離,避免功率電路中的大電流、高電壓信號對控制電路造成干擾。功率器件和電感等高頻器件應盡量靠近,以縮短電流回路,減小回路面積。因為回路面積越大,產生的電磁輻射越強。同時,在布局時要注意輸入輸出端口的位置,避免輸入輸出信號交叉,防止形成干擾路徑。在布線方面,電源線和地線應盡可能加粗,以降低線路阻抗,減少電壓降和電流波動。對于高頻信號走線,應盡量縮短長度,并采用單點接地的方式,避免形成接地環(huán)路,產生共模干擾。此外,可以在PCB上設置屏蔽層,將敏感電路和高頻電路進行屏蔽,減少電磁耦合。
導電陽極絲(CAF,Conductive Anodic Filamentation)是一種在PCB中可能發(fā)生的電化學現象。當PCB處于高溫高濕環(huán)境時,在電壓差的作用下,內部的金屬離子沿著玻纖絲間的微裂通道與金屬鹽發(fā)生電化學反應,從而發(fā)生漏電的現象。
穩(wěn)壓器只能起到穩(wěn)定直流電壓的作用,它無法改變交流電壓的大小和方向,也就無法替代變壓器的作用。而變壓器雖然自身并沒有穩(wěn)壓功能,但是卻能夠改變電壓大小和方向,使得電力設備能夠正常傳輸和分配。
隨著單片機系統(tǒng)越來越廣泛地應用于消費類電子、醫(yī)療、工業(yè)自動化、智能化儀器儀表、航空航天等各領域,單片機系統(tǒng)面臨著電磁干擾(EMI)日益嚴重的威脅。電磁兼容性(EMC)包含系統(tǒng)的發(fā)射和敏感度兩方面的問題。
ARM系統(tǒng)幾乎都采用Linux的操作系統(tǒng),而且?guī)缀跛械挠布到y(tǒng)都要單獨構建自己的系統(tǒng),與其他系統(tǒng)不能兼容,這也導致其應用軟件不能方便移植,這一點一直嚴重制約了ARM系統(tǒng)的發(fā)展和應用。GOOGLE開發(fā)了開放式的Android系統(tǒng)后,統(tǒng)一了ARM結構電腦的操作系統(tǒng),使新推出基于ARM結構的電腦系統(tǒng)有了統(tǒng)一的、開放式的、免費的操作系統(tǒng),為ARM的發(fā)展提供了強大的支持和動力。
阻抗匹配(Impedance matching)是微波電子學里的一部分,是高頻設計中的一個常用概念,主要用于傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,不會有信號反射回來源點,從而提升能源效益。信號源內阻與所接傳輸線的特性阻抗大小相等且相位相同,或傳輸線的特性阻抗與所接負載阻抗的大小相等且相位相同,分別稱為傳輸線的輸入端或輸出端處于阻抗匹配狀態(tài),簡稱為阻抗匹配。
PCB烘烤的程序其實還蠻麻煩的,烘烤時必須將原本的包裝拆除后才能放入烤箱中,然后要用超過100℃的溫度來烘烤,但是溫度又不能太高,免得烘烤期間水蒸氣過度膨脹反而把PCB給撐爆。
二極管的主要參數包括最大整流電流、最高反向工作電壓、反向電流、動態(tài)電阻和最高工作頻率等。這些參數共同決定了二極管的性能和應用范圍。在選擇二極管時,應根據實際電路的需求來綜合考慮這些參數,以選擇最適合的二極管型號。
印制電路板(PCB)布線在高速電路中具有關鍵的作用,但它往往是電路設計過程的最后幾個步驟之一。高速PCB布線有很多方面的問題,關于這個題目已有人撰寫了大量的文獻。本文主要從實踐的角度來探討高速電路的布線問題。主要目的在于幫助新用戶當設計高速電路PCB布線時對需要考慮的多種不同問題引起注意。另一個目的是為已經有一段時間沒接觸PCB布線的客戶提供一種復習資料。
在缺乏電路板圖紙的情況下,維修電路板可能會顯得頗具挑戰(zhàn)。然而,只要掌握一定的方法和技巧,你仍然能夠有效地解決許多常見問題。
孔徑大小直接影響高頻信號的衰減程度。例如,在28GHz頻段,0.3mm孔徑的過孔每厘米損耗比0.2mm孔徑高2.1dB,這種差異在長距離傳輸中會被放大。大孔徑因孔壁銅層電流路徑更長、電磁耦合更強,導致導體損耗和介質損耗均增加。采用0.15mm激光孔可降低1.8dB損耗。
PCB線路板過孔堵上的主要目的是防止波峰焊或回流焊時錫液貫穿孔洞引發(fā)短路,同時避免助焊劑殘留、錫珠彈出等問題,確保貼裝精度和信號完整性。