隨著現(xiàn)代汽車的快速發(fā)展,汽車電子設備不斷增加,傳統(tǒng)的接線方式已遠遠不能滿足汽車愈加復雜的控制系統(tǒng)要求,汽車控制局域網(wǎng)CAN總線應運而生,它廣泛應甩于汽車電子控制系統(tǒng)
3.2 全橋驅(qū)動電路的邏輯控制電路換相控制邏輯包括根據(jù)當前轉(zhuǎn)子的位置控制電橋上下橋臂,正確給出繞組通電;通過對繞組通電的時間比例控制速度;對電橋?qū)嵤┧绤^(qū)保護,防止燒毀
論文詳細分析了無刷直流電機的驅(qū)動控制,設計了基于ARM7 LPC2132微處理器的電動汽車雙后輪驅(qū)動控制系統(tǒng),該智能控制器能夠?qū)崿F(xiàn)電動汽車前進.后退.自動巡航.電子差速等電動汽車基本行使功能,同時硬件具有電機過流保護.電池欠壓保護及串口通信等功能,很好地滿足了實際使用要求.
1 引 言 2001年,美國發(fā)明家Kamen發(fā)明了一種新型的方便快捷的兩輪交通工具“Segway”,行走平衡控制技術(shù)成為全球機器人控制技術(shù)的研究熱點。以平行雙輪電動車作為移動平臺為機器人的研究提供了技術(shù)支持,
1 引 言 2001年,美國發(fā)明家Kamen發(fā)明了一種新型的方便快捷的兩輪交通工具“Segway”,行走平衡控制技術(shù)成為全球機器人控制技術(shù)的研究熱點。以平行雙輪電動車作為移動平臺為機器人的研究提供了技術(shù)支持,
針對電動汽車具有良好的能源和環(huán)保等性能,提出一種基于CAN總線的電動車控制系統(tǒng)設計方案,該控制系統(tǒng)能提高電動車控制系統(tǒng)間的通信可靠性,實現(xiàn)電池管理系統(tǒng)、電機控制器、充電機和整車控制器的實時通信和集中管理,使電動車運行更加實時和穩(wěn)定。詳細論述了系統(tǒng)的總體結(jié)構(gòu)、CAN通信協(xié)議協(xié)議的制定、節(jié)點硬件電路設計及軟件設計。經(jīng)過實驗,各節(jié)點間通信實時可靠,驗證了電動車控制系統(tǒng)的可靠性和正確性。
2001年,美國發(fā)明家Kamen發(fā)明了一種新型的方便快捷的兩輪交通工具“Segway”,行走平衡控制技術(shù)成為全球機器人控制技術(shù)的研究熱點。以平行雙輪電動車作為移動平臺為機器人的研究提供了技術(shù)支持,同時由于他的行為與火箭飛行和兩足機器人有很大的相似性,因而對其運動平衡控制研究具有重大的理論和實際意義。文獻[2]介紹了平行雙輪電動車的控制器電路,以C8051F020單片機為控制核心通過調(diào)整車體平臺的運行位置,從而使車體平臺始終保持平衡狀態(tài)。然而其并沒有考慮載人、載物的因素以及轉(zhuǎn)向和特殊路面、打滑等方面。再者,作為一種交通工具,由于沒有考慮初始自平衡的設計,將會給以后的產(chǎn)業(yè)化進程提出新的挑戰(zhàn)。因此需要尋找控制方法、原理均不同的其他控制理論來設計,如模糊控制、智能控制等。 一般的單片或多片微處理器不能滿足復雜、先進的控制算法時,DSP成為這種應用場合的首選器件。TI公司推出的面向運動控制、電動機控制的TMS320x24xx系例DSP控制器,把一個16位的定點DSP核和用于控制的外設、大容量的片上存儲器集成在單一芯片上,能夠?qū)崿F(xiàn)軟件包括電動機狀態(tài)值的采樣與計算,控制算法的實施以及PWM信號的輸出,此外還包括故障檢測與保護、數(shù)據(jù)交換與通信等。與單片機相比,在電機控制系統(tǒng)設計中,采用TMS320LF2407A具有更有效的控制能力,從而減小整個系統(tǒng)的成本。
2001年,美國發(fā)明家Kamen發(fā)明了一種新型的方便快捷的兩輪交通工具“Segway”,行走平衡控制技術(shù)成為全球機器人控制技術(shù)的研究熱點。以平行雙輪電動車作為移動平臺為機器人的研究提供了技術(shù)支持,同時由于他的行為與火箭飛行和兩足機器人有很大的相似性,因而對其運動平衡控制研究具有重大的理論和實際意義。文獻[2]介紹了平行雙輪電動車的控制器電路,以C8051F020單片機為控制核心通過調(diào)整車體平臺的運行位置,從而使車體平臺始終保持平衡狀態(tài)。然而其并沒有考慮載人、載物的因素以及轉(zhuǎn)向和特殊路面、打滑等方面。再者,