SiliconLabs已經(jīng)在\"采集、計算和通信\"的指導思想下開發(fā)出各類兼容8051內(nèi)核的8位MCU。在之前的文章中,我們已經(jīng)對模擬采集接口和8051計算引擎有關(guān)的主題進行過詳細論述。本文主要討論內(nèi)建在基于8051內(nèi)核MCU之中的通信接口如何滿足當今快速涌現(xiàn)的物聯(lián)網(wǎng)應(yīng)用的需求。
隨著科技的高速發(fā)展,現(xiàn)代工業(yè)測控領(lǐng)域的很多應(yīng)用中都需要實現(xiàn)大量數(shù)據(jù)的定時采集存儲。筆者以為海流計設(shè)計的海流數(shù)據(jù)采集存儲接口電路為例,介紹一種定時采集存儲系統(tǒng)的工作原理及其實現(xiàn)方法。
熱電偶冷端溫度的數(shù)字化實時處理
DALLAS公司單線數(shù)字溫度傳感器DS18B20是一種新的“一線器件”,它具有體積小、適用電壓寬等特點。一線總線獨特而且經(jīng)濟的特點,使用戶可輕松地組建傳感器網(wǎng)絡(luò),為測量系統(tǒng)的構(gòu)建引入全新概念。DS18B20支持“一線總線”接口,測量溫度范圍為-55℃~+125℃,在-10℃~+85℃范圍內(nèi),精度為±0.5℃;通過編程可實現(xiàn)9~12位的數(shù)字值讀數(shù)方式;可以分別在93.75ms和750ms內(nèi)將溫度值轉(zhuǎn)化為9位和12位的數(shù)字量。每個DS18B20具有唯一的64位長序列號,存放于DS18B20內(nèi)部ROM只讀存儲器中。
C8051F040中內(nèi)置CAN總線協(xié)議控制器,只要外接總線驅(qū)動芯片和適當?shù)目垢蓴_電路就可以很方便地建立一個實用的CAN總線智能測控節(jié)點
P80C592是PHILIPS公司采用先進的COMS工藝制造的高性能8位單片機。該單片機的指令集與80C51 完全兼容,但在80C51標準特性的基礎(chǔ)上又增加了一些對于應(yīng)用具有重要作用的硬件功能。P80C592是P8XC592的無片內(nèi)ROM版本,是現(xiàn)有P8XC522和Philips CAN控制器PCA82C200功能相結(jié)合的產(chǎn)物。
超聲波測距作為一種非接觸性的檢測方法,因其結(jié)構(gòu)簡單緊湊、可靠性高、價格低廉、實時性強等優(yōu)點,近年來已經(jīng)得到了廣泛應(yīng)用,如液位測量,修路過程中路面平整檢測,汽車倒車雷達,機器人輔助視覺識別系統(tǒng)等。但因超聲波在空氣中傳播時受到諸如環(huán)境溫度、濕度、風速等影響,傳統(tǒng)的超聲波測距系統(tǒng)精度普遍較低。文獻[4]采用了在系統(tǒng)中增加硬件溫度補償模塊僅在一定程度上可以避免因環(huán)境溫度變化帶來的測量誤差。文獻[5,6]中采用小波等處理算法,也并不能彌補系統(tǒng)本質(zhì)上的缺陷。因此,研究了一種控制精度高,適用范圍寬的高精度多路同步超聲波測距系統(tǒng)。
本文從以太網(wǎng)與工業(yè)現(xiàn)場總線的互聯(lián)出發(fā),主要介紹了CAN總線與以太網(wǎng)嵌入式網(wǎng)關(guān)電路的設(shè)計與實現(xiàn),本文對比了CAN 和以太網(wǎng)相連的嵌入式網(wǎng)關(guān)設(shè)計的兩種方法,并從硬件結(jié)構(gòu)和軟件結(jié)構(gòu)兩方面進行了闡述。
51單片機故障問題分析
基于AT89C2051的步進電機驅(qū)動器系統(tǒng)電路原理
單片機在電子產(chǎn)品中的應(yīng)用已經(jīng)越來越廣泛,在很多的電子產(chǎn)品中也用到了溫度檢測和溫度控制,但那些溫度檢測與控制電路通常較復(fù)雜,成本也高,本文提供了一種低成本的利用單片機多余I/O口實現(xiàn)的溫度檢測電路,該電路非常簡單,且易于實現(xiàn),并且適用于幾乎所有類型的單片機。
超聲波是一種頻率在20KHz 以上的機械波,在空氣中的傳播速度約為340 m/s(20°C時)。超聲波可由超聲波傳感器產(chǎn)生,常用的超聲波傳感器兩大類:一類是采用電氣方式產(chǎn)生超聲波,一類是用機械方式產(chǎn)生超聲波,目前較為常用的是壓電式超聲波傳感器。由于超聲波具有易于定向發(fā)射,方向性好,強度好控制,對色彩、光照度不敏感,反射率高等特點,因此被廣泛應(yīng)用于無損探傷,距離測量、距離開關(guān)、汽車倒車防撞、智能機器人等領(lǐng)域。
通過對一階旋轉(zhuǎn)倒立擺系統(tǒng)原理的分析,選用單片機作為控制器,直流電機作為執(zhí)行器,電位器式角度傳感器作為反饋環(huán)節(jié),采用PID控制算法設(shè)計實現(xiàn)了一階旋轉(zhuǎn)倒立擺控制系統(tǒng)。實驗結(jié)果表明該系統(tǒng)在穩(wěn)定的基礎(chǔ)上具有較強的魯棒性,驗證了PID控制算法在一階旋轉(zhuǎn)倒立擺系統(tǒng)中應(yīng)用的可行性和有效性。
輪式移動機器人是機器人研究領(lǐng)域的一項重要內(nèi)容.它集機械、電子、檢測技術(shù)與智能控制于一體。在各種移動機構(gòu)中,輪式移動機構(gòu)最為常見。輪式移動機構(gòu)之所以得到廣泛的應(yīng)用。主要是因為容易控制其移動速度和移動方向。因此.有必要研制一套完整的輪式機器人系統(tǒng)。并進行相應(yīng)的運動規(guī)劃和控制算法研究。筆者設(shè)計和開發(fā)了基于5l型單片機的自動巡線輪式機器人控制系統(tǒng)。
目前,大量的嵌入式系統(tǒng)均采用了單片機,并且這樣的應(yīng)用正在更進一步擴展;但是多年以來人們一直為單片機系統(tǒng)的可靠性問題所困惑。在一些要求高可靠性的控制系統(tǒng)中,這往往成為限制其應(yīng)用的主要原因。