基于四路同步水聲信號記錄儀的設(shè)計方案
一、引言
水聲信號是實現(xiàn)水下探測、定位、導(dǎo)航、通信的主要信息載體,對水下目標(biāo)回波及其輻射噪聲的原始信號進行分析、處理和研究可獲得大量的目標(biāo)特性信息,這就需要一種多路同步的高精度水聲信號采集記錄裝置來采集記錄水下目標(biāo)的原始信號。
傳統(tǒng)的水聲采集系統(tǒng)常采用單路16bit以下A/D轉(zhuǎn)換器和單片機為核心器件,采樣精度低,采集存儲速度慢,處理能力弱,通用性不強。因此,文中采用24bit高精度A/D轉(zhuǎn)換器ADS1274、超低功耗數(shù)字信號處理芯片TMSVC5509A和CF卡為主存儲介質(zhì),設(shè)計開發(fā)了一種四路同步水聲信號記錄儀。該記錄儀精度高、動態(tài)范圍大、功耗低、存儲容量大,工作穩(wěn)定可靠,通用性強,可完成30kHz以下的水聲信號采集記錄和分析處理。
二、記錄儀整體設(shè)計方案
水聲數(shù)據(jù)記錄儀需要長時間工作于水下,在功能上需要滿足大容量的存儲、低功耗、高保真、實時采集記錄的要求。鑒于水聲信號頻率一般不高,采樣率100kHz足以滿足大部分信號采集需求,四路24bit采集8個小時總的數(shù)據(jù)量不超過32G,因此采用容量為32G的ComPACt Flash(CF卡)就能滿足系統(tǒng)存儲要求。記錄儀采樣頻率100kHz時,要在10μs的采樣周期內(nèi)完成4路24bit水聲信號的采集存儲,實時性要求較高,這里選用TI超低功耗數(shù)字信號處理芯片TMS320VC5509A為主控處理器,其處理速度達到400MIPS,可滿足系統(tǒng)需求。根據(jù)系統(tǒng)的需要,系統(tǒng)硬件部分由四路信號調(diào)理(前置放大及濾波)、高精度模數(shù)轉(zhuǎn)換器(AD)、主控處理器(DSP)、數(shù)據(jù)存儲單元(CF卡)、PC機接口單元構(gòu)成(USB),軟件部分由數(shù)據(jù)采集模塊、數(shù)據(jù)存儲模塊和數(shù)據(jù)讀取模塊構(gòu)成。記錄儀總體結(jié)構(gòu)圖如圖1所示。
三、記錄儀硬件設(shè)計與實現(xiàn)
(一)信號調(diào)理部分
信號調(diào)理部分的主要的功能,是完成對水聽器接收到的弱信號進行放大、濾波、單端變雙端、電壓抬升以使接收到的水聽器信號經(jīng)過調(diào)理后能滿足A/D輸入信號的要求。
水聽器的信號是微弱信號,前置放大對抑制噪聲起到致關(guān)重要的作用。是否能有效抑制各種噪聲,是本系是否成功的關(guān)鍵,這里采用了成熟的商品化前放模塊。
前放模塊的技術(shù)指標(biāo)為:輸入方式:差動與單端;共模抑制比:>100dB;輸入阻抗:200MΩ;噪聲電壓密度為3nV/ ;增益:10倍(20dB)。
(二)A/D接口電路
經(jīng)過反復(fù)論證和比較,以及考慮到系統(tǒng)性能、電路結(jié)構(gòu)、系統(tǒng)功耗、可擴展性及片源等多方面的因素,本系統(tǒng)選用了美國TI公司的一款24位高精度AD轉(zhuǎn)換器ADS1274.該AD芯片內(nèi)部集成有多個獨立的高階斬波穩(wěn)定調(diào)制器和FIR數(shù)字濾波器,可實現(xiàn)4通道同步采樣,支持高速、高精度、低功耗、低速4種工作模式,具有6 2 K H z的帶寬,采樣頻率最高可達128KS/s.該芯片采用差動輸入方式,所以輸入端可直接與傳感器或微小的電壓信號相連;可通過設(shè)置相應(yīng)的輸入/輸出引腳選擇工作模式,無需寄存器編程,其數(shù)據(jù)輸出可選擇幀同步或SPI串行接口,便于連接至DSP,可滿足要求嚴(yán)格的多通道微弱信號采集應(yīng)用。
(三)主控制器
主控制器是系統(tǒng)的核心, 本系統(tǒng)所選用的主控處理器是TI公司的TMS320VC5509A,該芯片是TI公司生產(chǎn)的TMS320C5000系列DSP芯片中的一種。C5000系列的DSP在移動通信終端中應(yīng)用廣泛,其中C54x最為成熟,它采用改進的哈佛結(jié)構(gòu),并集成有豐富的硬件邏輯和外部接口資源,不僅提高了性能,也降低了成本和體積。C55x是在C54x的基礎(chǔ)上發(fā)展起來的,具有C54x的全部優(yōu)點,而且是目前功耗最低的新產(chǎn)品。C55x低功耗的這一特點正符合水下能量受限的電子系統(tǒng)的功耗要求。
(四)CF卡控制器
CF支持三種基本工作模式:PC CardMemory模式、PC Card I/O模式以及TrueIDE模式。文中使用True IDE模式,它可以在CF卡上電時自動進入。在插入CF卡之前,保證CF卡插槽的/OE管腳為低電平,即可以讓CF卡進入True IDE模式。DSP與CF卡的接口電圖如圖4所示。
A3-A0為數(shù)據(jù)、命令或狀態(tài)寄存器地址線。D15-D0為數(shù)據(jù)總線。CD1、CD2為CF卡存在性硬件檢測腳,內(nèi)部和地相連,當(dāng)CF卡有效插入卡座時,對應(yīng)卡座上的CD1和CD2拉低,可由硬件或軟件判斷CF卡是否存在。RDY/BSY為CF卡狀態(tài)信號,當(dāng)CF卡忙時,該腳置低,此時DSP不能對其訪問及進行其它操作。WE、OE為讀寫有效信號。REG為寄存器選擇信號線,-REG為高時訪問數(shù)據(jù)存儲器(命令或數(shù)據(jù)),為低時訪問屬性存儲器。上電時,CF卡自動完成復(fù)位,并在缺省狀態(tài)下進入memory模式,也可由外部控制器經(jīng)RESET腳對CF卡重新復(fù)位。圖5為記錄儀的硬件電路板實物圖。
四、系統(tǒng)軟件設(shè)計
系統(tǒng)軟件設(shè)計的重點是完成采集數(shù)據(jù)的存儲,即完成對CF卡的讀寫操作。
在DSP讀寫CF卡扇區(qū)時,首先設(shè)置起始扇區(qū)的L B A地址和扇區(qū)數(shù)目;接著設(shè)置命令寄存器,讀取數(shù)據(jù)設(shè)置命令“20H”,寫入數(shù)據(jù)設(shè)置命令“3 0 H”;然后讀取狀態(tài)寄存器,判斷狀態(tài)寄存器值是否為“5 8 H”,若是,則開始讀寫操作,若否,則繼續(xù)讀取狀態(tài)寄存器。接下來讀取狀態(tài)寄存器是否為“50H”,判斷CF卡操作是否完成,若否,則繼續(xù)讀取判斷;若為是,則結(jié)束讀寫過程。如果在判斷狀態(tài)寄存器中發(fā)生了超時或出現(xiàn)錯誤,可設(shè)置超時或錯誤標(biāo)志,以跳出讀寫過程。圖6為CF卡讀寫一個扇區(qū)的流程圖。
五、結(jié)語
測試結(jié)果表明,本方案中所設(shè)計的記錄儀精度高、動態(tài)范圍大、功耗低、存儲容量大,工作穩(wěn)定可靠,可完成30kHz以下的水聲信號采集記錄。 同時經(jīng)過某噪聲測試試驗證明,本方案中所設(shè)計的記錄儀體積小、功耗低(2W左右)存儲容量大,能穩(wěn)定可靠的實時采集并存儲水下環(huán)境噪聲和目標(biāo)輻射噪聲數(shù)據(jù),具有良好的工程應(yīng)用前景。